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ABSTRACT

The propagation of electromagnetic waves in a uniform magnetized
plasma, bounded by a  cylindrical conducting wall iz studied using the
two-fluid theory, with the pressure term included. Taking the
cylindrical coordinates and perturbation of t.he form
f{ryexplikz-ing-iwt) we obtain a sixth order equation for the
electric field component Ez(r). Its =solution iz a sum of three

Beseal’s or medified Bessel’s functions. With appropriate boundary
conditions, we obtain the disperzion relation which is  solved
numerically, The main result of this study is that the pressure term
causes the mode conversion of a backward wave to another backward
vave. The backward waves are modes which preopagate in a frequency
roige between the plasma and upper-hybrid frequencies.

1. INTRODUCTION

In this paper we s=tudy the global modes of electromagnetic
oscillation in a cylindrieal waveguide. This is an important research
topie not only for practical purposes (fusion devices> but al=zo for
basic research in electromagnetic theory [11 We include the electron
temperature in the Trivelpiece and Gould problem (2,31, and our model
is mot restricted to the slow wave cases (w /k° < ¢° so that a
greater number of modes is analysed. One important result is that we
generalize the dispersion relation of Ghosh and Pal [41

1. THE MODEL AND DISPERSION RELATION

in our mode! the plasma is treated =3 an adiabatic fluid in
which the ions are at rest (approximation valid in the high frequency

Limit, w > «@. and w > w 2 We include a constant external
P el

magnet.ic field, ﬁo’ along the waveguide. VWe apply 2 linearization

process in the form £ = fD + f(r> explikz-imf-iwt>, where k is

the wave number, n is an integer, w iz the angular frequency of the
electromagnetic fleld, and where we utilize cylindrical coordinates
(the z axis of the coordinate =system is the waveguide axi=). In the



absence of an equilibrium electrostatic fielg, §0= 0, and of an
electron drift velocity, 30 = {, the first order equations ftc bhe

=olved are (equations of continuity, of momentum transfer and
Maxwell’s equaticons):

iwpy = nmlU* G+ Uy,

fwigm Uy = noc(fh + 3y % Eo] + 7P
Tx Ex= iwp, Hi,

X f}l-—: —ieE, El —1,e E;,

1.2 3
where P, m M U(=(kaTo/m) ), ¥, kﬂ, To’ ui, e, ﬁi, ﬁi, Hy and

2, are, respectively, the perturbed pressure, flud density,
electron mass, electron thermal wvelocity, ratic of specific heats
Cusually » = 5/3), Boltzmann’s constant, electron temperature,

perturbed fluid velocity, electron charge, perturbed electric and
magnetic filelds, wvacuum magnetic permeability and wvacuum dielectric
constant. Te obtain these equations we assumed also that the electron
collision frequency is much smaller than the wave frequency w.

Assuming that ﬁa = BOE we gel from these equations [5-7)

(Vi 40 vl+hvi+)E = (U] + )NV +BNvL + E)E. =0,

where
w? w‘z __szZ
b= 260k -
w? gt =KUY LR = U
b= K4 2020 [(kz+m L S o L

w? w? = B & =u2
b= - 58 (R vt ).

and n.e?\ k el
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and ki R kz , ka are analytic functions of bi’ hz and ba’ ohtained by
Cardan’s formula [8]. All other field components can be obtained in
term of E (rd.

z

The selition af thiz equaiion is=

By = A du(rki) + BoJa(rks) + Codalrks).

vwhere Jn(x) is the n-th-order Bessel function of first kind. Applying
the boundary conditions E (R) = EGCR) = 0, and ur(R) = 0, where R is
z

the radius of the waveguide, we obtain the general dispersion
relation given by [5-7I
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and where j =1,2 or 3.



[11. NUMERICAL RESULTS

In figure 1 we show the dispersion relation for a magnetized
plasma waveguide with radive R=0.085 m, plasma frequency w =
P

1_2,10103_1, electron cyclotron frequency = 15107,  electron
<
temperature T0= 40. eV and azimuthal wavenhumber n=1. The figure shows

the mode conversion pattern for values of the wawve number k around
1/R. We also =zee the mode conversion for kR ~ 4. It is interesting to
chserve the ocourence of the mode conversion at a low temperature.
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