к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Алмаз

Алмаз (тюрк. алмас, от греч. adamas - несокрушимый) - аллотропная модификация углерода, кристаллич. решётка к-рой относится к кубич. сингонии (см. ниже). А. стабилен при высоких давлениях и метастабилен при нормальных условиях, хотя и может при них существовать неопределённо долго. При нагревании он переходит в графит (температуpa перехода составляет для синтетич. микропорошков 450-500°С, для кристаллов размерами от 0,6 до 1 мм - 600-700°С и зависит от совершенства структуры, кол-ва и характера примесей). Принято считать, что кристаллы природного А. сгорают в воздухе при температуре св. 850°С, в потоке О2 - св. 750°С.

Атомы углерода в структуре А. образуют четыре кова-лентные связи с валентным углом 109°28' (направление связей совпадает с осями L3 тетраэдра). Ср. значение пост. решётки 111993-329.jpg111993-330.jpg (при температуре 25°С и давлении 1 атм) и возрастает при нагревании. Элементарная ячейка А. образована атомами, расположенными по вершинам куба, в центре его граней (рис. 1, атомы 1, 5, 7) и в центрах четырёх несмежных октантов куба (атомы 6, 4, 2, 8). Каждый атом С находится в центре тетраэдра, вершинами к-рого служит четыре ближайших атома. В природе А. встречается в виде отд. кристаллов, сростков, агрегатов (бесцветных или окрашенных), а также поликристаллич. образований (баллас, карбонадо). Физ. и механич. свойства, окраска, скульптура поверхности обусловлены прежде всего дефектами кристаллич. решётки,

111993-331.jpg

Рис. 1.

наличием примесей и включений, т. е. в конечном счёте условиями роста кристаллов.

Наиболее распространённая гипотеза генезиса природных алмазов утверждает их глубинное (магматич.) происхождение при давлениях св. 4 ГПа и температурах более 1000°С. Однако включения кальцита, кварца, барита, биотита, обнаруженные в А., ставят под сомнение единственность этой гипотезы.

Теоретич. предпосылки получения А. искусств. путём были научно обоснованы в кон. 30-х гг. 20 в. Син-тетич. А. впервые воспроизводимо получен в Швеции (1953), затем в США (1954) и СССР (1959).

111994-1.jpg

Рис. 2. Фазовая р - Т-диаграмма углерода: 1 - область синтеза алмаза с применением металлов - растворителей-катализаторов (Ia - область выращивания крупных кристаллов на затравку); 2 - область экспериментальных работ по превращению графита в алмаз статическим методом при прямом переходе; 3,7 - области экспериментальных работ по превращению графита в алмаз динамическим методом (7 - метод фирмы "Дюпон"); 4 - область экспериментальных работ по кристаллизации алмаза из расплавленного углерода; 5 - область изучения некаталитического превращения в алмаз элементарного углерода, находящегося в различных состояниях, и органических соединений; 6 - область образования лосдейлита; 8 - область кристаллизации алмаза в метастабильных условиях. Т - тройная точка графит - алмаз - жидкий углерод; Т' - предполагаемая тройная точка жидкий углерод - алмаз - металлический углерод. Точки на диаграмме состояния отвечают тем температурам и давлениям, от которых производится сброс температуры (закалка образцов) для сохранения образовавшейся фазы.

Наиболее распространён метод синтеза А. из графита при статич. давлениях высоких. Синтез происходит в области термодинамич. устойчивости А., т.е. при давлениях 4-10 ГПа и температурах 1000-2500°С, в присутствии металлов, выполняющих роль растворителей-катализаторов, в течение времени от 10-15 с до 1 ч (размеры получаемых монокристаллов от 0,1 до 1,5 мм по ребру октаэдра; более крупные А.-8-10 мм - выращивают на затравку св. 100 ч). По истечении времени синтеза для предотвращения обратного перехода А. в графит температуру резко снижают, и новая фаза фиксируется. Синте-тич. А. образуются также при действии динамич. высокого давления ок. 30 ГПа и температуры ~ 3000 °С и выше (размеры получаемых этим методом А. -10-30 мкм). В метастабильных для А. условиях при давлениях от неск. сотен ГПа до неск. Па и температурах 600-800 °С синтез ведут из газовой фазы (метан, пропан, двуокись углерода и т. п.), как правило на затравку (эпитаксиальное наращивание). При статич. давлении более 11 - 13 ГПа и температуре выше 2500 °С возможно превращение графит - алмаз без введения активирующих добавок, а также получение А. из расплава углерода (рис. 2). Синтетич. А. выпускают в виде микропорошков, монокристаллов, поликристаллич. структур (баллас, карбонадо), алмазных спеков и пластин с металлич. подложкой.

Первая классификация А., в основу к-рой положено содержание в нём азота, была предложена в кон. 30-х гг. и уточнена в кон. 50-х гг. В соответствии с этой классификацией большинство А. (~98%) относится к типу I - содержание азота до 0,2%. К типу II принадлежат А., содержащие не более 10-3 % азота. А. I и II типов подразделяются на подгруппы. А. подгруппы Iа содержат азот в непарамагнитной форме, А -дефекты и др. азотсодержащие дефекты сложного строения. А. подгруппы Iб содержат одиночные замещающие атомы азота. А. подгруппы а прозрачны до длин волн111994-2.jpg ~320-330 мкм, Iб - в области 111994-3.jpg . 500-550 мкм и имеют максимум поглощения при 111994-4.jpg270 мкм. А. II типа также делятся на две подгруппы: Па (безазотные А.) и IIб (А., содержащие примеси, ответственные за полупроводниковые свойства, в частности В). Выделяют также А. типа III, к к-рому относят А., характеризующиеся наличием В1-дефектов. А. этого типа поглощают излучение в области l~225-240 мкм. А. I и III типов характеризует поглощение ИК-излучения в области l~7-11 мкм.

Физ. свойства А. связаны с его структурой и содержанием примесей, кол-во к-рых в природных А. достигает 5%, в синтетических 8-10%. В качестве структурных примесей достоверно зафиксированы N, В, Ni. В процессе синтеза можно легировать А. путём введения в шихту разл. добавок. Спайность граней А. по (111) совершенная. Критич. напряжение скалывания по (111) -10,5b0,1 ГПа, по (100) -13,5b0,1 ГПа. Предел прочности на сжатие кристаллов синтетич. А. без видимых включений 17-17,5 ГПа. А. имеет максимальную среди всех известных материалов твёрдость, к-рая превышает твёрдость корунда в 150 раз. Кристалл А. анизотропен, для разных граней его твёрдость различна [для грани (111) природного А.- 110-135 ГПа, для (100)-56-60 ГПа; для грани (111) синтетического А.-91-101 ГПа, для (100)-60- 68 ГПа].

Кристалл А., имеющий мин. кол-во примесей (А. "чистой воды"), прозрачен для излучения в видимой части спектра и встречается редко. Чаще всего А. окрашены в разл. цвета - от жёлтого до серого и чёрного. Синтетич. А. обычно зелёные. Введение примесей в исходную шихту позволяет изменять цвет синтетич. А.

Теплопроводность нек-рых А. при комнатной температуре выше теплопроводности меди в 4 раза; ср. её значения при 180°С (Вт/м-К) для А. типа Iа-800, для Па- 1250, для IIб-1260, для синтетич. монокристаллов - 660, поликристаллов - 400. Уд. электрич. сопротивление А. типа Пб (полупроводниковые) составляет 1 - 108 Ом*см, А. др. типов -до 1010 Ом*см. Показатель преломления в пределах одного кристалла может быть различен; ср. значение его для природных А. 2,4165, для синтетич. А. 2,4199 (для кристалла октаудрич. формы). Угловая дисперсия для природных и синтетич. А. одинакова - 0,063. Отражат. способность 0,172. Кристаллы А. практически всегда обладают дву-преломлением - вследствие разл. деформаций кристаллов и особенностей текстуры.

Как правило, кристаллич. А. люминесцирует под действием УФ-излучения, рентгеновского и 111994-5.jpg-излучений, а также пучков быстрых частиц.

А. применяют в разл. инструментах для обработки цветных металлов и сплавов, в буровой технике, камне-обработке, ювелирной пром-сти. В физике и электронике используют полупроводниковые свойства алмаза, в аппаратах высокого давления - его твёрдость и прозрачность. В решётке типа алмаза кристаллизуются Si, Ge, серое олово, а также ряд соединений (CuF, BeS, CuCl, ZnS - решётка типа цинковой обманки).

Литература по алмазам

  1. Шафрановский И. И., Алмазы, М--Л., 1964;
  2. Орлов Ю. Л., Минералогия алмаза, М., 1973;
  3. Клюев Ю. А., Непша В. И., Дуденков Ю. А., О физической классификации алмазов, "Тр. ВНИИ Алмаза", 1974, № 3;
  4. Безруков Г. Н., Бутузов В. П., Самойлович М. И., Синтетический алмаз, М., 1976;
  5. Верещагин Л. Ф., Синтетические алмазы и гидроэкструзия, М., 1982.
  6. Хайдаров К.А. Происхождение и динамика ударного метаморфизма - BRI, Алматы, 2008
  7. Г. Я. Безруков

    к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

    (время поиска примерно 20 секунд)


    Знаете ли Вы, в чем ложность понятия "физический вакуум"?

    Физический вакуум - понятие релятивистской квантовой физики, под ним там понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. Физическим вакуумом релятивистские теоретики называют полностью лишённое вещества пространство, заполненное неизмеряемым, а значит, лишь воображаемым полем. Такое состояние по мнению релятивистов не является абсолютной пустотой, но пространством, заполненным некими фантомными (виртуальными) частицами. Релятивистская квантовая теория поля утверждает, что, в согласии с принципом неопределённости Гейзенберга, в физическом вакууме постоянно рождаются и исчезают виртуальные, то есть кажущиеся (кому кажущиеся?), частицы: происходят так называемые нулевые колебания полей. Виртуальные частицы физического вакуума, а следовательно, он сам, по определению не имеют системы отсчета, так как в противном случае нарушался бы принцип относительности Эйнштейна, на котором основывается теория относительности (то есть стала бы возможной абсолютная система измерения с отсчетом от частиц физического вакуума, что в свою очередь однозначно опровергло бы принцип относительности, на котором постороена СТО). Таким образом, физический вакуум и его частицы не есть элементы физического мира, но лишь элементы теории относительности, которые существуют не в реальном мире, но лишь в релятивистских формулах, нарушая при этом принцип причинности (возникают и исчезают беспричинно), принцип объективности (виртуальные частицы можно считать в зависимсоти от желания теоретика либо существующими, либо не существующими), принцип фактической измеримости (не наблюдаемы, не имеют своей ИСО).

    Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.

    Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик Анри Пуанкаре, уже нельзя. Слишком много фактов противоречит этому.

    Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.

    Однако такая постановка является внутренне противоречивой (виртуальные частицы ненаблюдаемы и их по произволу можно считать в одном случае отсутствующими, а в другом - присутствующими) и противоречащей релятивизму (то есть отрицанию эфира, так как при наличии таких частиц в вакууме релятивизм уже просто невозможен). Подробнее читайте в FAQ по эфирной физике.

    НОВОСТИ ФОРУМА

    Форум Рыцари теории эфира


    Рыцари теории эфира
     05.12.2020 - 06:25: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
    05.12.2020 - 06:24: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> ПРОБЛЕМА КРИМИНАЛИЗАЦИИ ЭКОНОМИКИ - Карим_Хайдаров.
    05.12.2020 - 06:23: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Александра Флоридского - Карим_Хайдаров.
    05.12.2020 - 06:20: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
    05.12.2020 - 06:19: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
    04.12.2020 - 19:57: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
    04.12.2020 - 19:56: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> КОЛЛАПС МИРОВОЙ ФИНАНСОВОЙ СИСТЕМЫ - Карим_Хайдаров.
    04.12.2020 - 17:35: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
    04.12.2020 - 17:18: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от О.Н. Четвериковой - Карим_Хайдаров.
    04.12.2020 - 08:47: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ЗА НАМИ БЛЮДЯТ - Карим_Хайдаров.
    04.12.2020 - 08:46: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Пламена Паскова - Карим_Хайдаров.
    04.12.2020 - 08:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.

    Боровское исследовательское учреждение - Bourabai Research Bourabai Research Institution