к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Андерсоновская локализация

Андерсоновская локализация - явление, возникающее при распространении волн в среде с пространственными неоднородностями и состоящее в том, что вследствие многократного рассеяния на неоднородностях и интерференции рассеянных волн становится невозможным распространение бегущих волн; колебания приобретают характер стоячей волны, сконцентрированной (локализованной) в ограниченной области пространства. А. л. возможна для волн любой природы, но особенно ярко она проявляется в случае волн де Бройля для частиц и квазичастиц при изучении кинетич. свойств (электропроводности, теплопроводности) неупорядоченных твёрдых сред (аморфные вещества, сильно легированные полупроводники и др.), т. к. при А. л. подвижность частиц равна 0. Представление о возможности локализации частиц и квазичастиц в неупорядоченных системах было впервые выдвинуто в 1958 Ф. У. Андерсоном (Ph. W. Anderson). С его именем и именем Н. Ф. Мотта (N. F. Mott) связаны как введение этих понятий в физику аморфных проводников, так и дальнейшее развитие теории (см. Аморфные и стеклообразные полупроводники, Аморфные металлы, Неупорядоченные системы).

Спектр энергий частиц в такой среде, напр. электрона в аморфном твёрдом теле, можно разделить на 2 области значений энергии e, для к-рых подвижность mK0 (подвижные или проводящие состояния) и m=0 (локализованные или непроводящие состояния).

111995-29.jpg

Схематическое изображение энергии электрона в поле потенциала в случае хаотически расположенных неоднородностей. Пунктир показывает положение порога подвижности 111995-30.jpg по краям плотности состояний 111995-31.jpg и их заполнения, соответствующие андерсоновскому диэлектрику (слева) и металлу (справа). Штрих-пунктирная линия показывает положение энергии Ферми 111995-32.jpg. Заштрихованы заполненные энергетич состояния в области подвижных состояний электрона.

Граница eg между этими областями наз. порогом подвижности (рис.). Пусть волновой пакет в нач. момент находится в начале координат. Если его энергия соответствует области подвижных состояний частицы, то за большое время t пакет сильно расплывается, так что ср. квадрат радиуса R распределения плотности вероятности обнаружить частицу равен

111995-33.jpg (1)

где D - коэф. диффузии, связанный с подвижностью частиц соотношением Эйнштейна. Если же энергия111995-34.jpg соответствует области локализов. состояний, то рас-плывание волнового пакета ограничено и при достаточно больших временах 111995-35.jpg примет вид предельного распределения плотности вероятности:

111995-36.jpg (2)

Характерный размер этого распределения L наз. длиной локализации. В случае одномерного (случайного) потенциала все состояния частицы локализованы, каким бы слабым ни был случайный потенциал. При этом для состояния с большой энергией длина локализации L равна по порядку величины длине l свободного пробега частицы (в приближении однократного рассеяния).

В двумерном случае все состояния также локализованы, но длина локализации экспоненциально возрастает при возрастании энергии. В трёхмерном случае справедлив т. н. критерий локализации Иоффе - Регеля - Мотта: если длина волны де Бройля111995-37.jpg частицы, в частности электрона, меньше, чем длина свободного пробега l, то состояния являются подвижными; при 111995-38.jpg имеется порог подвижности 111995-39.jpg и все состояния с энергией 111995-40.jpg локализованы.

Реальные плёнки и проволоки ведут себя как двумерные и одномерные проводники, но длина локализации в них больше (из-за наличия поперечного движения). Так, в проволоке длина локализации L совпадает с длиной проволоки такого же сечения, сопротивление к-рой 111995-41.jpg кОм (е - заряд электрона). Для реальных проводников существует критерий Туалеса: если сопротивление образца при Т=0К больше, чем 30 кОм, то его размер превышает длину локализации.

Если состояния в случайном потенциале, обусловленном примесями, заполнены электронами так, что уровень Ферми лежит в области локализов. состояний, то статич. электропроводимость вещества при Т=0К равна 0 (андерсоновский диэлектрик). Отличие этого состояния от состояния обычных кристаллич. диэлектриков состоит в том, что плотность состояния 111995-42.jpg на уровне Ферми 111995-43.jpg отлична от 0. Поэтому проводимость111995-44.jpg при низкой частоте 111995-45.jpg приложенного электрич. поля не пропорциональна 111995-46.jpg (см. Диэлектрические потери ),а удовлетворяют ф-ле Мотта-Березинского:

111995-47.jpg (3)

где d - размерность пространства. При 111995-48.jpg проявляется прыжковая проводимость: электрон проводит длит. время в локализов. состоянии с энергией 111995-49.jpg, изредка перепрыгивая благодаря взаимодействию с фо-нонами в др. локализов. состояние с энергией111995-50.jpg Состояния с разл. энергией локализованы вблизи разл. точек пространства, поэтому прыжки с передачей энергии приводят к пространственному перемещению электронов. При низких темп-pax прыжковая проводимость описывается законом Мотта:

111995-51.jpg (4)

При этом характерная передача энергии при прыжке 111995-52.jpg , а длина прыжка 111995-53.jpg . При возрастании Т значение R сравнивается с расстояниями между центрами локализации (в легиров. полупроводниках со ср. расстоянием между примесями). При этом моттовский режим прыжков переменной длины сменяется режимом прыжков на соседнюю примесь, а закон Мотта (4) переходит в выражение:

111995-54.jpg

Фазовый переход в неупорядоченной среде, при к-ром уровень Ферми проходит через порог подвижности, наз. переходом Андерсона. В точке перехода L обращается в бесконечность, а при сколь угодно малом смещении уровня Ферми в сторону подвижных состояний появляется отличная от 0 статич. проводимость. Дискуссия о том, появляется ли проводимость скачком (фазовый переход первого рода) или возрастает непрерывно (фазовый переход второго рода), пока не закончилась, но вторая точка зрения является более аргументированной.

При описании поведения электронов в реальных неупорядоченных системах (аморфных твёрдых телах или кристаллич. полупроводниках с большой концентрацией примесей) необходимо учитывать кулоновское взаимодействие между электронами. Оно приводит к образованию т. н. кулоновской щели - провала плотности состояний 111995-55.jpg при 111995-56.jpg, к видоизменению закона Мотта и др.

Литература по андерсоновской локализации

  1. Мотт Н., Электроны в неупорядоченных структурах, пер. с англ., М., 1969;
  2. Мотт Н., Дэвис Э., Электронные процессы в некристаллических веществах, пер. с англ., 2 изд., т. 1-2, М., 1982;
  3. Шкловский Б. И., Эфрос А. Л., Электронные свойства легированных полупроводников, М.. 1979.

Д. Е. Хмельницкий

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

(время поиска примерно 20 секунд)


Знаете ли Вы, в чем ложность понятия "физический вакуум"?

Физический вакуум - понятие релятивистской квантовой физики, под ним там понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. Физическим вакуумом релятивистские теоретики называют полностью лишённое вещества пространство, заполненное неизмеряемым, а значит, лишь воображаемым полем. Такое состояние по мнению релятивистов не является абсолютной пустотой, но пространством, заполненным некими фантомными (виртуальными) частицами. Релятивистская квантовая теория поля утверждает, что, в согласии с принципом неопределённости Гейзенберга, в физическом вакууме постоянно рождаются и исчезают виртуальные, то есть кажущиеся (кому кажущиеся?), частицы: происходят так называемые нулевые колебания полей. Виртуальные частицы физического вакуума, а следовательно, он сам, по определению не имеют системы отсчета, так как в противном случае нарушался бы принцип относительности Эйнштейна, на котором основывается теория относительности (то есть стала бы возможной абсолютная система измерения с отсчетом от частиц физического вакуума, что в свою очередь однозначно опровергло бы принцип относительности, на котором постороена СТО). Таким образом, физический вакуум и его частицы не есть элементы физического мира, но лишь элементы теории относительности, которые существуют не в реальном мире, но лишь в релятивистских формулах, нарушая при этом принцип причинности (возникают и исчезают беспричинно), принцип объективности (виртуальные частицы можно считать в зависимсоти от желания теоретика либо существующими, либо не существующими), принцип фактической измеримости (не наблюдаемы, не имеют своей ИСО).

Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.

Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик Анри Пуанкаре, уже нельзя. Слишком много фактов противоречит этому.

Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.

Однако такая постановка является внутренне противоречивой (виртуальные частицы ненаблюдаемы и их по произволу можно считать в одном случае отсутствующими, а в другом - присутствующими) и противоречащей релятивизму (то есть отрицанию эфира, так как при наличии таких частиц в вакууме релятивизм уже просто невозможен). Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 02.12.2020 - 07:56: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Проблема народного образования - Карим_Хайдаров.
02.12.2020 - 07:55: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от О.Н. Четвериковой - Карим_Хайдаров.
02.12.2020 - 07:53: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> ПРОБЛЕМА КРИМИНАЛИЗАЦИИ ЭКОНОМИКИ - Карим_Хайдаров.
02.12.2020 - 07:52: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Пламена Паскова - Карим_Хайдаров.
02.12.2020 - 07:48: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
02.12.2020 - 07:46: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Александра Флоридского - Карим_Хайдаров.
01.12.2020 - 20:01: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
01.12.2020 - 20:00: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
01.12.2020 - 08:06: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
01.12.2020 - 07:43: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> КОЛЛАПС МИРОВОЙ ФИНАНСОВОЙ СИСТЕМЫ - Карим_Хайдаров.
01.12.2020 - 07:42: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРОБЛЕМЫ КОНСПИРОЛОГИИ - ГЕРМЕТИЗАЦИИ ЗНАНИЙ - Карим_Хайдаров.
30.11.2020 - 09:33: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.

Боровское исследовательское учреждение - Bourabai Research Bourabai Research Institution