к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Аэродинамический нагрев

Аэродинамический нагрев - нагрев тел, движущихся с большой скоростью в воздухе или др.газе. А. н. неразрывно связан с аэродинамическим сопротивлением, к-рое испытывают тела при полёте в атмосфере. Энергия, затрачиваемая на преодоление сопротивления, частично передаётся телу в виде А. н. Рассмотрение физ. процессов, обусловливающих А. н., удобно провести с точки зрения наблюдателя, находящегося на движущемся теле. В этом случае можно заметить, что набегающий на тело газ тормозится вблизи поверхности тела. Сначала торможение происходит в ударной волне, образующейся перед телом, если полёт происходит со сверхзвуковой скоростью. Дальнейшее торможение газа происходит, как и при дозвуковых скоростях полёта, непосредственно у самой поверхности тела, где оно вызывается силами вязкости, заставляющими молекулы "прилипать" к поверхности с образованием пограничного слоя.

При торможении потока газа его кинетич. энергия уменьшается, что в соответствии с законом сохранения энергии приводит к увеличению внутр. энергии газа и его температуры. Макс. теплосодержание (энтальпия)газа при его торможении у поверхности тела близко к энтальпии торможения: 111999-86.jpg , где 111999-87.jpg- энтальпия набегающего потока, а 111999-88.jpg- скорость полёта. Если скорость полёта не слишком высока (111999-89.jpg1000 м/с), то уд. теплоёмкость при пост. давлении ср может считаться постоянной и соответствующая темп-pa торможения газа может быть определена из выражения

111999-90.jpg

При полёте со скоростью звука повышение температуры воздуха у тела составляет до 50 К; при входе в атмосферу Земли с первой космич. скоростью (7,9 км/с) T0 составляет уже ок. 8000 К, а со второй (11,2 км/с) - ок. 11000 К. Передача тепла из областей с повышенной температурой и приводит к А. н. движущегося тела. Существуют две формы А. н.- конвективный нагрев и радиационный.

Конвективный нагрев происходит вследствие передачи теплоты теплопроводностью из "горячей" части пограничного слоя к поверхности тела. Количественно конвективный тепловой поток qK описывается соотношением, представляющим собой модифицир. закон Ньютона для теплообмена

111999-91.jpg

где Те - равновесная темп-pa (предельная температура, до к-рой могла бы нагреться поверхность тела, если бы не было отвода энергии), 111999-92.jpg- коэф. конвективного теплообмена, индексом 111999-93.jpg отмечаются параметры на поверхности. Tе близка к температуре торможения и может быть определена из выражения

111999-94.jpg

где r-коэфф. восстановления температуры (для ламинарного пограничного слоя 111999-95.jpg , для турбулентного- 111999-96.jpg ), T1 и М1- темп-pa и Маха число на внеш. границе пограничного слоя, 111999-97.jpg -отношение уд. теплоёмкостей газа при пост. давлении и объёме, Pr - число Прандтля.

Величина 111999-98.jpg зависит от скорости и высоты полёта, формы и размеров тела, а также от нек-рых др. факторов. Подобия теория позволяет представить законы теплообмена в виде соотношений между основными безразмерными критериями - Нуссельта числом 111999-99.jpg111999-100.jpg, Рейнольдса числом 111999-101.jpg , Прандтля числом 111999-102.jpg и температурным фактором 111999-103.jpg, учитывающим переменность теплофиз. свойств газа поперек пограничного слоя. Здесь 111999-104.jpg и111999-105.jpg - плотность и скорость газа,111999-106.jpg и 111999-107.jpg - коэфф. вязкости и теплопроводности, L - характерный размер тела. Наиб. влияние на конвективный А. н. оказывает число Рейнольдса. В простейшем случае продольного обтекания плоской пластины закон конвективного теплообмена для ламинарного пограничного слоя имеет вид

111999-108.jpg

где 111999-109.jpg и 111999-110.jpg111999-111.jpg вычисляются при температуре а для турбулентного пограничного слоя

111999-112.jpg

На носовой части тела с затуплением сферич. формы ламинарный теплообмен описывается соотношением:

111999-113.jpg

где re и mе вычисляются при температуре Tе. Эти ф-лы могут быть обобщены и на случай расчёта теплообмена при безотрывном обтекании тел более сложной формы с произвольным распределением давления. При турбулентном течении в пограничном слое происходит интенсификация конвективного А. н., связанная с тем, что, помимо молекулярной теплопроводности, существ. роль в переносе энергии нагретого газа к поверхности тела начинают играть турбулентные пульсации.

При теоретич. расчёте А. н. аппарата, летящего в плотных слоях атмосферы, течение около тела можно разбить на две области - невязкую и вязкую (пограничный слой). Из расчёта течения невязкого газа во внеш. области определяется распределение давления по поверхности тела. Течение в вязкой области при известном распределении давления вдоль тела может быть найдено путём численного интегрирования ур-ний пограничного слоя или для расчёта А. н. могут быть использованы разл. приближённые методы.

А. н. играет существ. роль и при сверхзвуковом течении газа в каналах, в первую очередь в соплах ракетных двигателей. В пограничном слое на стенках сопла темп-pa газа может быть близкой к температуре в камере сгорания ракетного двигателя (до 4000 К). При этом действуют те же механизмы переноса энергии к стенке, что и в пограничном слое на летящем теле, в результате чего и возникает А. н. стенок сопла ракетных двигателей.

Для получения данных по А. н., особенно для тел сложной формы, в т. ч. тел, обтекаемых с образованием отрывных областей, проводят эксперим. исследования на маломасштабных, геометрически подобных моделях в аэродинамических трубах с воспроизведением определяющих безразмерных параметров (чисел M, Re и температурного фактора).

С повышением скорости полёта темп-pa газа за ударной волной и в пограничном слое возрастает, в результате чего происходит диссоциация и ионизация молекул набегающего газа. Образующиеся при этом атомы, ионы и электроны диффундируют в более холодную область - к поверхности тела. Там происходит обратная хим. реакция - рекомбинация, идущая с выделением тепла. Это даёт дополнит. вклад в конвективный А. н. В случае диссоциации и ионизации удобно перейти от температур к энтальпиям:

111999-114.jpg

где 111999-115.jpg -равновесная энтальпия, 111999-116.jpg и 111999-117.jpg - энтальпия и скорость газа на внеш. границе пограничного слоя, а 111999-118.jpg- энтальпия набегающего газа при температуре поверхности. В этом случае для определения 111999-119.jpg могут быть использованы те же критич. соотношения, что и при относительно невысоких скоростях полёта.

При полёте на больших высотах на конвективный нагрев может оказать влияние неравновесность физико-хим. превращений. Это явление становится существенным, когда характерные времена диссоциации, ионизации и др. хим. реакций становятся равными (по порядку величины) времени пребывания частиц газа в области с повышенной температурой вблизи тела. Влияние физико-хим. неравновесности на А. н. проявляется в том, что продукты диссоциации и ионизации, образовавшиеся за ударной волной и в высокотемпературной части пограничного слоя, не успевают рекомбинировать в пристеночной, относительно холодной части пограничного слоя, теплота реакции рекомбинации не выделяется и А. н. уменьшается. В этом случае важную роль приобретают каталитич. свойства материала поверхности тела. Применяя материалы или покрытия с низкой каталитич. активностью по отношению к реакциям рекомбинации (напр., двуокись кремния), можно заметно снизить величину конвективного А. н.

Если через проницаемую поверхность тела происходит подача ("вдув") газообразного охладителя внутрь пограничного слоя, то интенсивность конвективного А. н. снижается. Это происходит гл. обр. в результате дополнит. затрат тепла на нагрев вдуваемых в пограничный слой газов. Эффект снижения конвективного теплового потока при вдуве инородных газов тем сильнее, чем меньше их молекулярный вес, поскольку при этом возрастает уд. теплоёмкость вдуваемого газа. При ламинарном режиме течения в пограничном слое эффект вдува проявляется сильнее, чем при турбулентном. При умеренных уд. расходах вдуваемого газа снижение конвективного теплового потока можно определить по формуле

111999-120.jpg

где 111999-121.jpg - конвективный тепловой поток к эквивалентной непроницаемой поверхности, G - уд. массовый расход вдуваемого газа через поверхность, а 111999-122.jpg - коэф. вдува, зависящий от режима течения в пограничном слое, а также свойств набегающего и вдуваемого газов. Радиационный нагрев происходит вследствие переноса лучистой энергии из областей с повышенной температурой к поверхности тела. При этом наибольшую роль играет излучение в УФ- и видимой областях спектра. Для теоретич. расчёта радиац. нагрева необходимо решать систему интегродифференциальных ур-ний радиац. газовой динамики, учитывающих собств. излучение газа, поглощение излучения средой и перенос лучистой энергии по всем направлениям в окружающей тело высокотемпературной области течения. Интегральный по спектру радиац. поток qР0 к поверхности тела может быть рассчитан с помощью Стефана-Болъцмана закона излучения:

111999-123.jpg

где T2 - темп-pa газа между ударной волной и телом, 111999-124.jpg = 5,67*10-8 Вт/(м24) - постоянная Стефана, 111999-125.jpg - эфф. степень черноты излучающего объёма газа, к-рый в первом приближении может рассматриваться как плоский изотермич. слой. Величина е определяется совокупностью элементарных процессов, вызывающих излучение газов при высоких темп-pax. Она зависит от скорости и высоты полёта, а также от расстояния между ударной волной и телом.

Если относит. величина радиац. А. н. велика, то существ. роль начинает играть радиац. охлаждение газа за ударной волной, связанное с выносом энергии из излучающего объёма в окружающую среду и понижением его температуры. В этом случае при расчёте радиац. А. н. должна быть введена поправка, величина к-рой определяется параметром высвечивания:

111999-126.jpg

где 111999-127.jpg- скорость полёта, 111999-128.jpg - плотность атмосферы. При полёте в атмосфере Земли со скоростями ниже первой космической радиац. А. н. мал по сравнению с конвективным. При второй космич. скорости они сравниваются по порядку величины, а при скоростях полёта 13-15 км/с, соответствующих возвращению на Землю после полёта к др. планетам, осн. вклад даёт радиационный А. н.

Частный случай А. н.- нагрев тел, движущихся в верх. слоях атмосферы, где режим обтекания является свободномолекулярным, т. е. длина свободного пробега молекул газа соизмерима или даже превышает размеры тела. В этом случае образования ударной волны не происходит и при больших скоростях полёта (порядка первой космической) для расчёта А. н. может быть использована простая ф-ла

111999-129.jpg

где 111999-130.jpg - угол между нормалью к поверхности тела и вектором скорости набегающего потока, а - коэф. аккомодации, к-рый зависит от свойств набегающего газа и материала поверхности и, как правило, близок к единице.

С А. н. связана проблема "теплового барьера", возникающая при создании сверхзвуковых самолётов и ракет-носителей. Важную роль А. н. играет при возвращении космич. аппаратов в атмосферу Земли, а также при входе в атмосферу планет со скоростями порядка второй космической и выше. Для борьбы с А. н. применяются спец. системы теплозащиты.

Литература по аэродинамическому нагреву

  1. Радиационные свойства газов при высоких температурах, M., 1971;
  2. Основы теории полета космических аппаратов, M., 1972;
  3. Основы теплопередачи в авиационной и ракетно-космической технике, M., 1975.

И. А. Анфимов

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

(время поиска примерно 20 секунд)


Знаете ли Вы, что такое "Большой Взрыв"?
Согласно рупору релятивистской идеологии Википедии "Большой взрыв (англ. Big Bang) - это космологическая модель, описывающая раннее развитие Вселенной, а именно - начало расширения Вселенной, перед которым Вселенная находилась в сингулярном состоянии. Обычно сейчас автоматически сочетают теорию Большого взрыва и модель горячей Вселенной, но эти концепции независимы и исторически существовало также представление о холодной начальной Вселенной вблизи Большого взрыва. Именно сочетание теории Большого взрыва с теорией горячей Вселенной, подкрепляемое существованием реликтового излучения..."
В этой тираде количество нонсенсов (бессмыслиц) больше, чем количество предложений, иначе просто трудно запутать сознание обывателя до такой степени, чтобы он поверил в эту ахинею.
На самом деле взорваться что-либо может только в уже имеющемся пространстве.
Без этого никакого взрыва в принципе быть не может, так как "взрыв" - понятие, применимое только внутри уже имеющегося пространства. А раз так, то есть, если пространство вселенной уже было до БВ, то БВ не может быть началом Вселенной в принципе. Это во-первых.
Во-вторых, Вселенная - это не обычный конечный объект с границами, это сама бесконечность во времени и пространстве. У нее нет начала и конца, а также пространственных границ уже по ее определению: она есть всё (потому и называется Вселенной).
В третьих, фраза "представление о холодной начальной Вселенной вблизи Большого взрыва" тоже есть сплошной нонсенс.
Что могло быть "вблизи Большого взрыва", если самой Вселенной там еще не было? Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 28.11.2020 - 09:04: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Александра Флоридского - Карим_Хайдаров.
28.11.2020 - 08:27: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
28.11.2020 - 08:26: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
28.11.2020 - 08:25: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Аманды Вольмер - Карим_Хайдаров.
28.11.2020 - 08:24: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Пламена Паскова - Карим_Хайдаров.
27.11.2020 - 21:31: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
27.11.2020 - 21:02: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
27.11.2020 - 20:57: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Амары Ельской - Карим_Хайдаров.
27.11.2020 - 20:57: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
27.11.2020 - 15:56: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Владимира Васильевича Квачкова - Карим_Хайдаров.
25.11.2020 - 07:52: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> ПРОБЛЕМА КРИМИНАЛИЗАЦИИ ЭКОНОМИКИ - Карим_Хайдаров.
25.11.2020 - 07:51: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от проф. В.Ю. Катасонова - Карим_Хайдаров.

Боровское исследовательское учреждение - Bourabai Research Bourabai Research Institution