к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Ванье - Мотта экситон

Ванье - Мотта экситон - квазичастица, возникающая при бестоковых возбуждениях в полупроводниках, связанных с образованием пары электрон-дырка. Конкретизируя идею Я. И. Френкеля об экситонах - возбуждённых состояниях электронной системы кристаллов, энергетич. уровни к-рых располагаются ниже зоны проводимости (см. Френкеля экситон), Г. Ванье и H. Мотт предположили, что экситон в кристал-лич. полупроводнике можно рассматривать как пару квазичастиц - электрон проводимости и дырку, к-рые связаны кулоновским взаимодействием [1, 2]. Энергия W кулоновского взаимодействия таких квазичастиц в кристалле 1119913-68.jpg , где 1119913-69.jpg- диэлектрич. проницаемость, г - расстояние между связанными в Ванье - Мотта экситоне электроном и дыркой, е - заряд электрона. Благодаря ослабленному средой в 1119913-70.jpg раз кулоновскому взаимодействию r может в сотни раз превосходить размеры элементарной ячейки кристалла. Вследствие этого Ванье - Мотта экситоне часто наз. экситоном большого радиуса. Энергия связи Э. обычно в 100-1000 раз меньше, чем энергия связи атома водорода. Ванье - Мотта экситоны существуют в кристаллах при низких темп-pax. При комнатных темп-pax колебания решётки достаточно сильны, чтобы разорвать слабую экситонную связь.

Время жизни Ванье - Мотта экситона невелико: электрон и дырка рекомбинируют с излучением фотона, обычно за время ~10-5-10-7 с. Кроме того, Ванье - Мотта экситон может погибнуть безызлучательно, напр. при захвате дефектами решётки. При малых концентрациях Ванье - Мотта экситоны ведут себя в кристалле подобно газу. При больших концентрациях становится существенным их взаимодействие и возможно образование связанного состояния двух Ванье - Мотта экситонов - экситонной молекулы (см. Биэкситон).

Ванье - Мотта экситоны существенным образом проявляются во всех оптич. эффектах в полупроводниках. Это связано с тем, что и в акте поглощения света (фотон рождает пару электрон - дырка) и акте излучения (фотон возникает при аннигиляции пары) электрон и дырка находятся в одной точке кристалла и кулоновское взаимодействие играет определяющую роль.

Экситонные уровни и зоны. Возбуждённое экситонное состояние, возникающее в одном месте кристаллич. решётки, вследствие трансляц. симметрии способно распространяться по кристаллу. По этой причине Ванье - Мотта экситон характеризуется квазиимпульсом 1119913-71.jpg , где 1119913-72.jpg - квазиволновой вектор, характеризующий движение центра масс экситона. Если эффективные массы электрона 1119913-73.jpg и дырки 1119913-74.jpgизотропны, то Шрёдингера ур-ние для Ванье - Мотта экситона имеет вид:

1119913-75.jpg

Здесь 1119913-76.jpg - энергия системы, а 1119913-77.jpg - операторы импульса электрона и дырки. Ур-ние (1) часто наз. двухчастичным. Оно позволяет включить экситонные состояния, точное описание к-рых возможно только в рамках многоэлектронной задачи, в зонную схему полупроводника, получаемую на основе одноэлектронного приближения (см. Зонная теория).

1119913-82.jpg

Рис. 1. Экситонный спектр поглощения Сu2О (пластинки толщиной 60 мкм) при 4,2 К. Видны члены серии, начиная с n = 3 1119913-83.jpg=573,5 нм).

Замена переменных, разделяющая поступат. движение Ванье - Мотта экситона как целого и внутр. орбитальное движение, приводит ур-ние (1) к виду:

1119913-78.jpg

Здесь 1119913-79.jpg-приведённая эффективная масса экситона, определяемая соотношением 1119913-80.jpg M=1119913-81.jpg-его полная масса, r = rэ - rд (rэ, rд - координаты электрона и дырки), Ф -функция, описывающая внутр. движение электрона и дырки, связанных в экситон. Ур-ние (2) аналогично ур-нию Шрёдингера для атома водорода. Отсюда следует, что Ф (r) - водородоподобная волновая функция, зависящая от квантовых чисел -главного п, азимутального l и магнитного т. функция Ф (r)связана с 1119913-84.jpg след. образом:

1119913-85.jpg

где 1119913-86.jpg - координата центра масс экситона.

Из (2) следует, что для каждого значения1119913-87.jpg существует набор экситонных состояний, характеризуемых энергиями:1119913-88.jpg

Первый член - энергия относительного орбитального движения электрона и дырки, связанных в экситон. Второй член - кинетич. энергия центра масс Ванье - Мотта экситонов, движущегося по кристаллу как целое. T. о., существует водородоподобная последовательность экситонных энергетич. зон, каждая из к-рых определяется квантовым числом n=1, 2, 3... Внутри таких зон энергия Ванье - Мотта экситона непрерывно зависит от 1119913-89.jpg. Если 1119913-90.jpg - ширина запрещённой зоны полупроводника, то (4) можно представить в виде:

1119913-91.jpg

Величина 1119913-92.jpg по аналогии с постоянной Ридберга для атома водорода наз. экситонным Pидбергом. Серия экситонных энергетич. зон сходится к границе энергии диссоциации Ванье - Мотта экситона на свободные электрон и дырку.

Поскольку импульс фотона 1119913-93.jpg в оптич. области спектра мал, то вследствие закона сохранения импульса прямые оптич. переходы возможны лишь в экситонные состояния с 1119913-94.jpg , т. е. практически на дно каждой из экситонных зон. Это правило отбора для оптически возбуждённого экситона сформулировано Френкелем в 1931. Следствием его является тот факт, что экситонный оптич. спектр состоит из последовательности узких спектральных линий, положение к-рых определяется выражением:

1119913-95.jpg

T. о., 1119913-96.jpg имеет смысл энергии ионизации Ванье - Мотта экситона, к-рая отсчитывается от дна зоны проводимости до состояния с n=1 [3, 4].

Экситонные спектры полупроводников. Спектр Ванье - Мотта экситона в кристалле Cu2O впервые наблюдали в 1952 E. Ф. Гросс и H. А. Корыев и независимо M. Хаяси (M. Hayasi) и К. Кацуки (К. Katsuki), но экситонная интерпретация его в работе японских авторов отсутствовала. При температуре жидкого гелия (4,2 К) в спектрах поглощения чистых кристаллов Cu2O насчитывается до 9 линий водородоподобной экситонной серии (рис. 1). Их энергетич. положение в спектре удовлетворяет соотношению:

1119913-97.jpg

Граница диссоциации при 4,2 К соответствует ширине запрещённой зоны 1119913-98.jpg =2,177 эВ (жёлтая часть спектра). Серия начинается с линии n=2. Это характерно для полупроводниковых кристаллов, где зона проводимости и валентная зона, формирующие экситон, описываются волновыми функциями одинаковой чётности. Оптич. переход между такими зонами запрещён. Внутр. (орбитальное) движение в экситоне, образованном носителями из таких зон, описывается волновыми функциями1119913-99.jpg Р-типа. В этом случае дипольный оптич. переход в состояние с n=1 запрещён. Если Ванье - Мотта экситон образован электроном и дыркой, принадлежащими зонам с волновыми функциями разной чётности, то 1119913-100.jpg - сферически симметричные 5-функции. В этом случае l=0 и т. к. l=п-1, то состояния с n=1 реализуются. Действительно, в таких полупроводниках, как GaAs, CdS, Ge, первое экситонное состояние 15 проявляется в спектре в виде интенсивной линии. В кристалле Cu2O разрешён лишь оптич. квадрупольный переход в состояние 15. Интенсивность соответствующей линии мала и сильно зависит от состояния поляризации света, проходящего через кристалл. Многочленная экситонная серия наблюдается в кристалле SnO2, где прямые ди-польные межзонные переходы также запрещены, а линия n=1 разрешена лишь в квадрупольном приближении.

Энергия ионизации Rex зависит от величины его приведённой эффективной массы m и диэлектрич. проницаемости кристалла1119913-101.jpg. Она очень мала для узкозонных полупроводников, напр. для InSb, где 1119913-102.jpg=0,0139 т0 0 - масса свободного электрона), а 1119913-103.jpg=17,9, энергия связи 1119913-104.jpg<0,5*10-3 эВ.

1119913-105.jpg

Рис. 2. Оптические переходы кристалла из основного состояния 1119913-106.jpg в экситонные энергетические зоны, 1119913-107.jpg - ширины запрещённых зон для прямых и непрямых переходов а -Прямые бесфононные переходы, когда возникают экситоны с волновым вектором 1119913-108.jpg. Спектр поглощения -водородоподобная серия узких линий поглощения (рис. 1). б - Прямые однофононные переходы, при которых возникают экситоны с 1119913-109.jpg; сплошные линии -переходы с поглощением фонона, пунктир - переходы с рождением фонона; спектр состоит из ступенек сплошного поглощения, в - Непрямые однофононные переходы в экситонные зоны, расположенные у дна зоны проводимости при1119913-110.jpg

1119913-111.jpg

Рис. 3. Схема экситонных уровней (а) и валентных зон (б) в Cu2O. Экситон с 1119913-112.jpg=0,097 эВ образован электроном зоны проводимости и дыркой валентной зоны1119913-113.jpg, а экситон с 1119913-114.jpg 0,154 эВ- электроном зоны проводимости и дыркой валентной зоны 1119913-115.jpg: 1119913-116.jpg- величина спин-орбитального расщепления валентной зоны в -Экситонный спектр поглощения Сu2О (пластинка толщиной 15 мкм), видны 2 серии в жёлтой и зелёной частях спектра.

1119913-117.jpg

Влияние примесей на образование Ванье - Мотта экситонов в кристаллич. полупроводниках, содержащих примеси, создающие мелкие уровни (донорные или акцепторные) при темп-pax T, превышающих порог ионизации примесных состояний, свободные носители заряда могут экранировать кулоновское взаимодействие и разрушать Ванье - Мотта экситон. При наличии свободных носителей потенциал кулоновского взаимодействия имеет вид:

1119913-118.jpg

где 1119913-119.jpg - дебаевский радиус экранирования .Здесь N - концентрация свободных носителей заряда. Если, радиус первого экситонного состояния с n=1 1119913-120.jpg (боровский радиус Ванье - Мотта экситона), то условие исчезновения экситонной серии вследствие экранировки: 1119913-121.jpg. Для Ванье - Мотта экситона в кристаллах Ge это условие выполняется при концентрации доноров ~1017 см-3 и Т=77 К. T. о., для наблюдения слабосвязанных экситонов в полупроводниках необходимы низкие температуры и чистые кристаллы.

Возбуждённые светом электроны и дырки могут связываться в Ванье - Мотта экситоне вблизи нейтр. или заряж. примеси, в результате чего возникают связанные состояния экситона с примесным центром - примесные экситоны (экситонные комплексы).

Роль зонной структуры полупроводника. Узкие линии в экситонном спектре поглощения кристалла наблюдаются при прямых бесфононных оптич. переходах, когда рождаются экситоны с 1119913-122.jpg (рис. 2, а). При участии фонона возможны оптич. переходы в точки экси-тонных зон с 1119913-123.jpg (рис. 2,б). В этом случае спектр поглощения Ванье - Мотта экситона имеет ступенчатый характер. На рис. 2, б показаны оптич. переходы с участием фонона, идущие в центре Бриллюэна зоны. Сплошное поглощение, связанное с участием фононов, наблюдается также, если оптич. переходы совершаются в экситонные состояния, расположенные вне центра зоны Бриллюэна (рис. 2, в). Такие непрямые ("косые") переходы характерны для кристаллов Si, Ge, GaP, у к-рых абс. энергетич. минимумы зоны проводимости расположены не в центре зоны Бриллюэна.

В спектрах поглощения и отражения полупроводников может наблюдаться неск. серий линий, обусловленных Ванье - Мотта экситоном. Это связано со сложной зонной структурой полупроводников. Напр., в кубич. кристаллах валентная зона расщепляется на две подзоны (рис. 3, а). Следствием этого является появление двух Ванье - Мотта экситонов, образованных дырками разных валентных подзон (рис. 3, б)и двух серий линий (рис. 3, в). Расстояние между границами этих серий соответствует величине спин-орбитального расщепления. В кристаллах с симметрией ниже кубической валентная зона расщепляется на 3 подзоны. Соответственно в спектрах наблюдаются 3 серии экситонных линий (напр., CdS, CdSe).

Двухчастичное ур-ние (1) описывает упрощённо энергетич. спектр Ванье - Мотта экситона. Более строгая теория учитывает, помимо существования подзон лёгких и тяжёлых дырок, вырожденных при к=0 в кубич. полупроводниках, гофрировку валентной зоны в к-пространстве, анизотропию эффективных масс, симметрию внутрикристаллич. поля, а также др. особенности зонной структуры и взаимодействий квазичастиц в кристалле. Такая теория (приводящая к громоздким численным расчётам) описывает отклонение положения экситонных уровней от простой водородоподобной зависимости (4), тонкую структуру экситонного спектра, закономерности, наблюдаемые при изучении влияния внеш. полей на экситонные спектры [3].

Влияние магнитного и электрического полей на экситонные спектры. Наряду с зеемановским расщеплением спектральных линий атомов и атомоподобных систем в магн. поле (см. Зеемана эффект ),может наблюдаться их сдвиг в фиолетовую часть спектра. Этот сдвиг - следствие возмущающего действия магн. поля на орбитальное движение электронов. Сдвиг всегда положителен, а величина его 1119913-124.jpg мала для состояний атома или атомоподобных систем с малыми радиусами г. Поскольку радиус возбуждённых экситонных состояний составляет сотни и тысячи 1119913-125.jpg, сдвиг, пропорциональный 1119913-126.jpg, хорошо наблюдается в полях Н, не превышающих десятки кЭ. Существование большого радиуса у Ванье - Мотта экситона первоначально и было доказано экспериментами по наблюдению сдвига экситонных линий под влиянием магн. поля.

В сильных магн. полях возникают т.н. диамагнитные экситоны, определяющие структуру спектра межзонного оптич. поглощения в полупроводниках, помещённых в сильное магн. поле [5]. Описание воздействия электрич. поля на край поглощения в полупроводниках также требует учёта экситонных состояний (см. Келдыша - Франца эффект).

Влияние Ванье - Мотта экситона на фотопроводимость и др. свойства полупроводников. Согласно предположению Френкеля, оптич. переходы в экситонные состояния не должны приводить к фотопроводимости. Однако взаимодействия экситонов, напр. с фононами или примесными атомами, приводят к возникновению фотопроводимости при возбуждении экситонов светом. Одним из видов такого взаимодействия может быть, напр., ионизация примеси или самого экситона и появление свободных электрона или дырки в зонах. Поэтому Ванье - Мотта экситоны играют существ. роль в разл. механизмах фотопроводимости полупроводников. Представления об экситонах используются при изучении спектра и кинетики люминесценции в полупроводниках. Существенная роль Ванье - Мотта экситонов в комбинационном рассеянии света в полупроводниках, особенно в процессах неупругого резонансного рассеяния света.

Способность экситонных возбуждений перемещаться по кристаллич. решётке приводит к проявлению в экситонных спектрах дисперсии пространственной. Взаимодействие Ванье - Мотта экситонов со световой волной приводит к образованию смешанных, т. н. свето-экситонных, состояний (поляритонов). Учёт этих эффектов лежит в основе кристаллооптики сред с пространственной дисперсией [6]. Нелинейные явления, наблюдаемые в области энергий, соответствующих экситонным поляритонам, перспективны для развития методов генерации суб-пикосекундных импульсов света.

При высоких концентрациях Ванье - Мотта экситонов наблюдаются т. н. металлизация экситонов с образованием электронно-дырочных капель и др. явления, обусловленные коллективным взаимодействием квазичастиц (см. Электронно-дырочная жидкость ,[7]).

Ванье - Мотта экситон состоит из двух фермионов, поэтому он является бозоном. Следовательно, возможна Бозе конденсация Ванье - Мотта экситонов (либо биэкситонов).

Литература по

  1. Wannier G. H., The structure of electronic excitation levels in insulating crystals, "Phys. Rev.", 1937, v. 52, p. 191;
  2. Mоtt N. F., Conduction in polar crystals, pt. 2, "Trans. Farad. Soc.", 1938, v. 34, p. 500;
  3. Hокс Р., Теория экситонов, пер. с англ., M., 1966;
  4. Гросс E., Экситон и его движение в кристаллической решетке, "УФН", 1962, т. 76, с. 433;
  5. Захарченя Б. П., Сейсян P. П., Диамагнитные экситоны в полупроводниках, "УФН", 1969, т. 97, с. 194;
  6. Агранович В. M., Гинзбург В. Л., Кристаллооптика с учетом пространственной дисперсии и теория экситонов, 2 изд., M., 1979;
  7. Келдыш Л. В., Электронно-дырочные капли в полупроводниках, "УФН", 1970, т. 100, с. 514.

Б. П. Захарченя.

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

(время поиска примерно 20 секунд)


Знаете ли Вы, что cогласно релятивистской мифологии "гравитационное линзирование - это физическое явление, связанное с отклонением лучей света в поле тяжести. Гравитационные линзы обясняют образование кратных изображений одного и того же астрономического объекта (квазаров, галактик), когда на луч зрения от источника к наблюдателю попадает другая галактика или скопление галактик (собственно линза). В некоторых изображениях происходит усиление яркости оригинального источника." (Релятивисты приводят примеры искажения изображений галактик в качестве подтверждения ОТО - воздействия гравитации на свет)
При этом они забывают, что поле действия эффекта ОТО - это малые углы вблизи поверхности звезд, где на самом деле этот эффект не наблюдается (затменные двойные). Разница в шкалах явлений реального искажения изображений галактик и мифического отклонения вблизи звезд - 1011 раз. Приведу аналогию. Можно говорить о воздействии поверхностного натяжения на форму капель, но нельзя серьезно говорить о силе поверхностного натяжения, как о причине океанских приливов.
Эфирная физика находит ответ на наблюдаемое явление искажения изображений галактик. Это результат нагрева эфира вблизи галактик, изменения его плотности и, следовательно, изменения скорости света на галактических расстояниях вследствие преломления света в эфире различной плотности. Подтверждением термической природы искажения изображений галактик является прямая связь этого искажения с радиоизлучением пространства, то есть эфира в этом месте, смещение спектра CMB (космическое микроволновое излучение) в данном направлении в высокочастотную область. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 03.12.2020 - 08:50: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
03.12.2020 - 08:50: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
03.12.2020 - 08:49: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
03.12.2020 - 08:49: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Александра Флоридского - Карим_Хайдаров.
02.12.2020 - 13:11: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> КОЛЛАПС МИРОВОЙ ФИНАНСОВОЙ СИСТЕМЫ - Карим_Хайдаров.
02.12.2020 - 13:11: ТЕОРЕТИЗИРОВАНИЕ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ - Theorizing and Mathematical Design -> ФУТУРОЛОГИЯ - прогнозы на будущее - Карим_Хайдаров.
02.12.2020 - 13:10: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от проф. В.Ю. Катасонова - Карим_Хайдаров.
02.12.2020 - 11:07: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
02.12.2020 - 11:07: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> ПРОБЛЕМА КРИМИНАЛИЗАЦИИ ЭКОНОМИКИ - Карим_Хайдаров.
02.12.2020 - 11:05: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Пламена Паскова - Карим_Хайдаров.
02.12.2020 - 07:56: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Проблема народного образования - Карим_Хайдаров.
02.12.2020 - 07:55: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от О.Н. Четвериковой - Карим_Хайдаров.

Боровское исследовательское учреждение - Bourabai Research Bourabai Research Institution