к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Волновое уравнение

Волновое уравнение - линейное однородное ур-ние в частных производных гиперболич. типа:

1119916-242.jpg

где t - время, с - пост. параметр, имеющий размерность скорости, 1119916-243.jpg - Д-Аламбера оператор ,1119916-244.jpg - Лапласа оператор. Иногда вместо 1119916-245.jpg в (1) используют оператор Лоренца 1119916-246.jpg. Векторное волновое уравнение предусматривает применение оператора 1119916-247.jpg к каждой из декартовых компонент вектора; при переходе к произвольным координатам используют тождество

1119916-248.jpg.

Первоначально волновое уравнение получено в одномерном варианте применительно к описанию движения упругой струны практически одновременно Д. Бернулли (D. Bernoulli), Ж. Д-Аламбером (J. d'Alembert) и Л. Эйлером (L. Euler) в 40-е гг. 18 века Бернулли выразил его решение через тригонометрич. ряды, Д-Аламбер и Эйлер записали общее решение в виде двух перемещающихся в пространстве со скоростью с возмущений (волн):

1119916-249.jpg

что и дало основание назвать ур-ние (1) волновым. Эквивалентность тригонометрич. представления решения волнового уравнения функциональной записи (2) доказана Ж. Фурье (J. Fourier) в 1824.

Впоследствии понятие волнового возмущения претерпело значит. изменения (см. Волны), поэтому (1) нельзя считать универсальным и единственным волновым уравнением; оно охватывает отнюдь не все виды движений, квалифицируемых сейчас как волновые. Иногда, напр., термин "уравнение волны" применяется к упрощённому уравнению 1-го порядка

1119916-250.jpg

описывающему волну (моду), распространяющуюся только в одном направлении. Ур-ние (3) можно интерпретировать как закон сохранения величины 1119916-251.jpg, поэтому его иногда наз. "кинематическим", в отличие от "динамического" ур-ния 2-го порядка или от системы двух ур-ний 1-го порядка (см., напр., Телеграфные уравнения).

Ур-ния (1) и (3) порождают достаточно разветвлённое семейство ур-ний, также причисляемых по совр. терминологии к категории волновых. Простейшим обобщением, сохраняющим внеш. облик ур-ния (1), является введение в него зависимости скорости с от координат, с=с(r)(неоднородные среды), от времени (параметрические среды), от самой функции 1119916-252.jpg (квазилинейные среды) или от частоты 1119916-253.jpg её изменения во времени, 1119916-254.jpg (диспергирующие среды).

Волновое уравнение является одной из наиб. употребит. матем. моделей в физике. Оно описывает почти все разновидности малых колебании в распределённых механич. системах (продольные звуковые колебания в газе, жидкости, твёрдом теле; поперечные колебания в струнах и т. п.). Ему удовлетворяют компоненты эл--магн. векторов и потенциалов, и, следовательно, мн. эл--магн. явления (от квазистатики до оптики) в той или иной мере объясняются свойствами его решений.

Инвариантные преобразования

Ур-ние (1) инвариантно (т. е. сохраняет свою структуру) относительно линейных преобразований координат и времени, объединённых в 10-параметрическую Пуанкаре группу (3 вращения вокруг пространственных осей, 3 равномерных движения вдоль них, объединяемые в Лоренца преобразования ,а также 4 смещения начала координат и времени). В 1910 Г. Бейтмен (H. Bateman) показал, что волновое уравнение инвариантно относительно 15-параметрич. конформной группы, содержащей в качестве подгруппы группу Пуанкаре. Из др. инвариантных преобразований следует выделить:

/1119916-255.jpg

где f1 и f2 - произвольные функции своих аргументов: 1119916-256.jpg . Прямые 1119916-257.jpg=const, 1119916-258.jpg=const наз. характеристиками; в этих координатах одномерное волновое уравнение (1) факторизуется 1119916-259.jpg.

Следовательно, преобразование (4) означает, что любая функция характеристики сама является характеристикой. Разделение переменных. Ур-ние (1) всегда допускает разделение переменных, т. е. факторизацию решения по координатам и времени1119916-260.jpg , при этом

1119916-261.jpg

т. е. для функции 1119916-262.jpg получается ур-ние осциллятора (6), а для и(r) - трёхмерное Гелъмголъца уравнение, в двумерном случае его называют также ур-нием мембраны, а в одномерном - ур-нием осциллятора (но уже пространственного, а не временного).

В декартовых координатах волновое уравнение (1) можно свести к набору четырех ур-ний осцилляторов: трёх пространственных 1119916-263.jpg и одного временного (6). Постоянные разделения kx, ky, kz можно интерпретировать как компоненты нек-рого вектора k, наз. волновым вектором, поскольку плоская волна вида

1119916-264.jpg

является собств. решением (1) при условии: 1119916-265.jpg1119916-266.jpg . Комплексная запись (7) включает в себя сразу два решения, соответствующие действительной и мнимой частям. Помимо декартовой системы координат, переменные в ур-нии Гельмгольца (5) разделяются в цилиндрических (полярной, эллиптич. и параболич.), сферической и сфероидальных (вытянутой и сплюснутой) системах.

Неоднородное волновое ур-ние содержит в правой части функцию источника

1119916-267.jpg

и наз. Д-Аламбера ур-нием. Его решение состоит из собств. мод - решений однородного ур-ния (1) и из вынужденного решения, связанного с источником. В силу линейности (8) справедлив суперпозиции принцип, поэтому функцию f можно разложить по любой полной системе функций (обычно выраженных через координаты, допускающие разделение переменных) или представить в виде интеграла (суммы) по элементарным источникам. Часто в качестве элементарного источника берётся дельта-функция Дирака, а соответствующее решение наз. Грина функцией. Всплеск от элементарного возмущения, имевшего место в начале координат в момент t=0, возбуждает волны, уходящие (бегущие, распространяющиеся) от источника. В одномерном случае их величина постоянна, в двумерном и трёхмерном - она монотонно убывает с удалением от центра. Для двумерного пространства характерно возникновение бесконечно длящегося последействия, благодаря к-рому отклик не повторяет функцию источника.

Обычно для волнового уравнения рассматривают Коши задачу, описывающую распространение волн в n-мерном пространстве. Классич. решением задачи Коши наз. непрерывно дифференцируемую функцию 1119916-268.jpg , удовлетворяющую волновому уравнению в полупространстве t > 0 и нач. условиям 1119916-269.jpg , где 1119916-270.jpg - заданные функции. Классич. решение даётся Кирхгофа формулой (п = 3), Пуассона формулой (n=2) или Д-Аламбера формулой (n=1). Рассматривают также смешанную задачу, описывающую колебания ограниченного объёма V.

Имеется много приближённых методов решения волнового уравнения. В т. н. KB-асимптотике 1119916-271.jpg рассматривают параболического уравнения приближение ,к-рое позволяет анализировать свойства волновых пучков и волновых пакетов, т. е. волновых образований, локализованных в пространстве и во времени, и геометрической оптики метод.

В системах с дисперсией волн возникает искажение профиля волны, обусловленное зависимостью скорости распространения её разл. участков от их крутизны, и решение в виде (2) становится невозможным. Если такую волну представить в виде суперпозиции синусоидальных мод типа (7), то дисперсия проявляется как зависимость фазовых скоростей с этих мод от частоты. Тогда соотношение 1119916-272.jpg следует рассматривать как дисперсионное уравнение, заменяющее исходное волновое уравнение (1) и в нек-ром смысле обладающее даже большей общностью, поскольку учёт зависимости 1119916-273.jpg можно провести только в рамках ур-ния Гельмгольца, т. е. после введения синусоидальной зависимости от времени. По виду дисперсионного ур-ния (в частности, если оно представляется полиномами конечных степеней по w и k) можно восстановить вид исходного дифференц. ур-ния, описывающего данный класс волн 1119916-274.jpg1119916-275.jpg; эти ур-ния могут существенно отличаться от стандартного ур-ния (1). Наиб. важной и наглядной иллюстрацией являются волны на поверхности жидкости .Напр., длинным (по сравнению с глубиной бассейна) волнам при небольших амплитудах соответствует дисперсионное ур-ние вида 1119916-276.jpg , по к-рому легко восстанавливается исходное дифференц. ур-ние 1119916-277.jpg . Это т. н. линеаризованное Кортевега-де Фриса уравнение, один из возможных вариантов обобщения ур-ния (3) на системы с дисперсией.

Нелинейные волновые уравнения

При перечислении нелинейных обобщений В. у. необходимо проявлять нек-рую сдержанность, с тем чтобы при этом не утрачивалась связь с исходным В. у. В этом смысле единственным терминологически точным обобщением является внесение зависимости скорости с от волновой функции в ур-ния (1), (3) или (8). Однако часто к нелинейным В. у. относят любые ур-ния, вырождающиеся в линейные В. у. при устранении нелинейности или линеаризации. Наиб. известны нелинейное ур-ние Клейна-Гордона 1119916-278.jpg1119916-279.jpg , обобщающее линейное Клейна-Гордона уравнение, и нелинейное ур-ние Гельмгольца 1119916-280.jpg1119916-281.jpg, учитывающее зависимость волнового числа от квадрата волновой функции.

Нелинейные В. у. позволяют описать взаимодействие волн (в т. ч. и квазимонохроматических), возникновение и эволюцию ударных волн и солитонов, самофокусировку и самоканализацию и т. д.

Литература по волновым уравнениям

  1. Морс Ф., Фешбах Г., Методы теоретической физики, пер. с англ., т. 1-2, M., 1958-60;
  2. Владимиров В. С., Уравнения математической физики, 4 изд., M., 1981;
  3. Уизем Дж., Линейные и нелинейные волны, пер. С англ., M., 1977.

M. А. Миллер, E. И. Якубович

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

(время поиска примерно 20 секунд)

Знаете ли Вы, что такое мысленный эксперимент, gedanken experiment?
Это несуществующая практика, потусторонний опыт, воображение того, чего нет на самом деле. Мысленные эксперименты подобны снам наяву. Они рождают чудовищ. В отличие от физического эксперимента, который является опытной проверкой гипотез, "мысленный эксперимент" фокуснически подменяет экспериментальную проверку желаемыми, не проверенными на практике выводами, манипулируя логикообразными построениями, реально нарушающими саму логику путем использования недоказанных посылок в качестве доказанных, то есть путем подмены. Таким образом, основной задачей заявителей "мысленных экспериментов" является обман слушателя или читателя путем замены настоящего физического эксперимента его "куклой" - фиктивными рассуждениями под честное слово без самой физической проверки.
Заполнение физики воображаемыми, "мысленными экспериментами" привело к возникновению абсурдной сюрреалистической, спутанно-запутанной картины мира. Настоящий исследователь должен отличать такие "фантики" от настоящих ценностей.

Релятивисты и позитивисты утверждают, что "мысленный эксперимент" весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.

Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: "Если факт не соответствует теории - измените факт" (В другом варианте " - Факт не соответствует теории? - Тем хуже для факта").

Максимально, на что может претендовать "мысленный эксперимент" - это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.

Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.

Понятие "мысленный эксперимент" придумано специально спекулянтами - релятивистами для шулерской подмены реальной проверки мысли на практике (эксперимента) своим "честным словом". Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМАФорум Рыцари теории эфира
Рыцари теории эфира
 13.06.2019 - 05:11: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМА ГЛОБАЛЬНОЙ ГИБЕЛИ ПЧЁЛ И ДРУГИХ ОПЫЛИТЕЛЕЙ РАСТЕНИЙ - Карим_Хайдаров.
12.06.2019 - 09:05: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
11.06.2019 - 18:05: ЭКСПЕРИМЕНТАЛЬНАЯ ФИЗИКА - Experimental Physics -> Эксперименты Сёрла и его последователей с магнитами - Карим_Хайдаров.
11.06.2019 - 18:03: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Андрея Маклакова - Карим_Хайдаров.
11.06.2019 - 13:23: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вячеслава Осиевского - Карим_Хайдаров.
11.06.2019 - 13:18: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Светланы Вислобоковой - Карим_Хайдаров.
11.06.2019 - 06:28: АСТРОФИЗИКА - Astrophysics -> К 110 летию Тунгуской катастрофы - Карим_Хайдаров.
10.06.2019 - 21:23: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Владимира Васильевича Квачкова - Карим_Хайдаров.
10.06.2019 - 19:27: СОВЕСТЬ - Conscience -> Высший разум - Карим_Хайдаров.
10.06.2019 - 19:24: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ЗА НАМИ БЛЮДЯТ - Карим_Хайдаров.
10.06.2019 - 19:14: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
10.06.2019 - 08:40: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> КОЛЛАПС МИРОВОЙ ФИНАНСОВОЙ СИСТЕМЫ - Карим_Хайдаров.
Bourabai Research Institution home page

Боровское исследовательское учреждение - Bourabai Research Bourabai Research Institution