к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Волны на поверхности жидкости

Волны на поверхности жидкости - волновые движения жидкости, существование к-рых связано с изменением формы её границы. Наиб. важный пример - волны на свободной поверхности водоёма (океана, моря, озера и др.), формирующиеся благодаря действию сил тяжести и поверхностного натяжения. Если к--л. внеш. воздействие (брошенный камень, движение судна, порыв ветра и т. п.) нарушает равновесие жидкости, то указанные силы, стремясь восстановить равновесие, создают движения, передаваемые от одних частиц жидкости к другим, порождая волны. При этом волновые движения охватывают, строго говоря, всю толщу воды, но если глубина водоёма велика по сравнению с длиной волны, то эти движения сосредоточены гл. обр. в приповерхностном слое, практически не достигая дна (короткие волны, или волны на глубокой воде). Простейший вид таких волн - плоская синусоидальная волна, в к-рой поверхность жидкости синусоидально "гофрирована" в одном направлении, а все возмущения физ. величин, напр. вертик. смещения частиц 1119917-281.jpg , имеют вид1119917-282.jpg, где х - горизонтальная, z - вертикальная координаты, 1119917-283.jpg - угл. частота, k - волновое число, А - амплитуда колебаний частиц, зависящая от глубины z. Решение ур-ний гидродинамики несжимаемой жидкости вместе с граничными условиями (пост. давление на поверхности и отсутствие возмущений на большой глубине) показывает, что 1119917-285.jpg , где A0 - амплитуда смещения поверхности. При этом каждая частица жидкости движется по окружности, радиус к-рой равен A (z) (рис., а). Т.о., колебания затухают в глубь жидкости по экспоненте, и тем быстрее, чем короче волна (больше k). Величины 1119917-286.jpg связаны дисперсионным уравнением

1119917-287.jpg

где 1119917-288.jpg - плотность жидкости, g - ускорение свободного падения, 1119917-289.jpg- коэф. поверхностного натяжения. Из этой ф-лы определяются фазовая скорость 1119917-290.jpg , с к-рой движется точка с фиксир. фазой (напр., вершина волны), и групповая скорость 1119917-291.jpg - скорость движения энергии. Обе эти скорости в зависимости от k (или длины волны 1119917-292.jpg) имеют минимум; так, мин. значение фазовой скорости волн на чистой (лишённой загрязняющих плёнок, влияющих на поверхностное натяжение) воде достигается при 1119917-293.jpg1,7 см и равно 23 см/c. Волны гораздо меньшей длины наз. капиллярными, а более длинные - гравитационными, т. к. на их распространение преимуществ. влияние оказывают соответственно силы поверхностного натяжения и тяжести. Для чисто гравитац. волн 1119917-294.jpg . В смешанном случае говорят о гравитац--капиллярных волнах.

1119917-284.jpg

Траектории движения частиц воды в синусоидальной волне: а - на глубокой, б - на мелкой воде.

В общем случае на характеристики волн влияет полная глубина жидкости H. Если вертик. смещения жидкости у дна равны нулю (жёсткое дно), то в плоской синусоидальной волне амплитуда колебаний меняется по закону: 1119917-295.jpg , а дисперс. ур-ние волн в водоёме конечной глубины (без учёта вращения Земли) имеет вид

1119917-296.jpg

Для коротких волн 1119917-297.jpg это ур-ние совпадает с (1). Для длинных волн, или волн на мелкой воде 1119917-298.jpg , если можно пренебречь эффектами капиллярности (для длинных волн они обычно существенны только в случае тонких плёнок жидкости), оно приобретает вид 1119917-299.jpg• В такой волне фазовая и групповая скорости равны одной и той же величине 1119917-300.jpg не зависящей от частоты. Это значение скорости наибольшее для гравитац. волн в данном водоёме; в самом глубоком месте океана (H=11 км) оно 1119917-301.jpg330 м/с. Движение частиц в длинной волне происходит по эллипсам, сильно вытянутым в горизонтальном направлении, причём амплитуда горизонтальных движений частиц почти одинакова по всей глубине (рис., б).

Перечисленными свойствами обладают только волны достаточно малой амплитуды (много меньшей как длины волны, так и глубины водоёма). Интенсивные нелинейные волны имеют существенно несинусоидальную форму, зависящую от амплитуды. Характер нелинейного процесса зависит от соотношения между длиной волны и глубиной водоёма. Короткие гравитац. волны на глубокой воде приобретают заострённые вершины, к-рые при определ. критич. значении их высоты обрушиваются с образованием капиллярной "ряби" или пенных "барашков". Волны умеренной амплитуды могут иметь стационарную форму, не изменяющуюся при распространении. Согласно теории Герстнера, в нелинейной стационарной волне частицы по-прежнему движутся по окружности, поверхность же имеет форму трохоиды, к-рая при малой амплитуде совпадает с синусоидой, а при нек-рой макс. критич. амплитуде, равной 1119917-302.jpg , превращается в циклоиду, имеющую на вершинах "острия". Более близкие к данным наблюдений результаты даёт теория Стокса, согласно к-рой частицы в стационарной нелинейной волне движутся по незамкнутым траекториям, т. е. "дрейфуют" в направлении распространения волны, причём при критич. значении амплитуды (несколько меньшем 1119917-303.jpg) на вершине волны появляется не "остриё", а "излом" с углом 120°.

У длинных нелинейных волн на мелкой воде скорость движения любой точки профиля растёт с высотой, поэтому вершина волны догоняет её подножие; в результате крутизна переднего склона волны непрерывно увеличивается. Для относительно невысоких волн этот рост крутизны останавливает дисперсия, связанная с конечностью глубины водоёма; такие волны описываются Кортевега-де Фриса уравнением. Стационарные волны на мелководье могут быть периодическими или уединёнными (см. Солитон); для них также существует критич. высота, при к-рой они обрушиваются. На распространение длинных волн существ. влияние оказывает рельеф дна. Так, подходя к пологому берегу, волны резко тормозятся и обрушиваются (прибой); при входе волны из моря в русло реки возможно образование крутого пенящегося фронта - бора, продвигающегося вверх по реке в виде отвесной стены. Волны цунами в районе очага землетрясения, их возбуждающего, почти незаметны, однако выходя на сравнительно мелководную прибрежную область - шельф, они иногда достигают большой высоты, представляя грозную опасность для береговых поселений.

В реальных условиях волны на поверхности жидкости не являются плоскими, а имеют более сложную пространственную структуру, зависящую от характеристик их источника. Напр., упавший в воду камень порождает круговые волны (см. Цилиндрическая волна ).Движение судна возбуждает корабельные волны; одна система таких волн расходится от носа судна в виде "усов" (на глубокой воде угол между "усами" не зависит от скорости движения источника и близок к 39°), другая - движется за его кормой в направлении движения судна. Источники длинных волн в океане - силы притяжения Луны и Солнца, порождающие приливы, а также подводные землетрясения и Извержения вулканов - источники волн цунами.

Сложную структуру имеют ветровые волны, характеристики к-рых определяются скоростью ветра и временем его воздействия на волну. Механизм передачи энергии от ветра к волне связан с тем, что пульсации давления в потоке воздуха деформируют поверхность. В свою очередь эти деформации влияют на распределение давления воздуха вблизи водной поверхности, причём эти два эффекта могут усиливать друг друга, и в результате амплитуда возмущений поверхности нарастает (см. Автоколебания). При этом фазовая скорость возбуждаемой волны близка к скорости ветра; благодаря такому синхронизму пульсации воздуха действуют "в такт" с чередованием возвышений и впадин (резонанс во времени и пространстве). Это условие может выполняться для волн разных частот, бегущих в разл. направлениях по отношению к ветру; получаемая ими энергия затем частично переходит и к другим волнам за счёт нелинейных взаимодействий (см. Волны). В результате развитое волнение представляет собой случайный процесс, характеризуемый непрерывным распределением энергии по частотам и направлениям (пространственно-временным спектром). Волны, уходящие из области действия ветра (зыбь), приобретают более регулярную форму.

Волны, аналогичные волнам на поверхности жидкости, существуют и на границе раздела двух несмешивающихся жидкостей (с.м. Внутренние волны).

В океане волны изучаются разл. методами с помощью волнографов, следящих за колебаниями поверхности воды, а также дистанц. методами (фотографирование поверхности моря, использование радио- и гидролокаторов) - с судов, самолётов и ИСЗ.

Литература по волнам на поверхности жидкости

  1. Баском В., Волны и пляжи, [пер. с англ.], Л., 1966;
  2. Tриккер Р., Бор, прибой, волнение и корабельные волны, [пер. с англ.], Л., 1969;
  3. Уизем Д ж., Линейные и нелинейные волны, пер. с англ., M., 1977;
  4. Физика океана, т. 2 - Гидродинамика океана, M., 1978;
  5. Кадомцев Б. Б., Pыдник В. И., Волны вокруг нас, M., 1981;
  6. Лайтхилл Дж., Волны в жидкостях, пер. с англ., M., 1981;
  7. Ле Блон П., Mайсек Л., Волны в океане, пер. с англ., [ч.] 1-2, M., 1981.

Л. А. Островский

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

(время поиска примерно 20 секунд)

Знаете ли Вы, в чем фокус эксперимента Майкельсона?

Эксперимент А. Майкельсона, Майкельсона - Морли - действительно является цирковым фокусом, загипнотизировавшим физиков на 120 лет.

Дело в том, что в его постановке и выводах произведена подмена, аналогичная подмене в школьной шуточной задачке на сообразительность, в которой спрашивается:
- Cколько яблок на березе, если на одной ветке их 5, на другой ветке - 10 и так далее
При этом внимание учеников намеренно отвлекается от того основополагающего факта, что на березе яблоки не растут, в принципе.

В эксперименте Майкельсона ставится вопрос о движении эфира относительно покоящегося в лабораторной системе интерферометра. Однако, если мы ищем эфир, как базовую материю, из которой состоит всё вещество интерферометра, лаборатории, да и Земли в целом, то, естественно, эфир тоже будет неподвижен, так как земное вещество есть всего навсего определенным образом структурированный эфир, и никак не может двигаться относительно самого себя.

Удивительно, что этот цирковой трюк овладел на 120 лет умами физиков на полном серьезе, хотя его прототипы есть в сказках-небылицах всех народов всех времен, включая барона Мюнхаузена, вытащившего себя за волосы из болота, и призванных показать детям возможные жульничества и тем защитить их во взрослой жизни. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМАФорум Рыцари теории эфира
Рыцари теории эфира
 01.10.2019 - 05:20: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вячеслава Осиевского - Карим_Хайдаров.
30.09.2019 - 12:51: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Дэйвида Дюка - Карим_Хайдаров.
30.09.2019 - 11:53: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Владимира Васильевича Квачкова - Карим_Хайдаров.
29.09.2019 - 19:30: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
29.09.2019 - 09:21: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> КОЛЛАПС МИРОВОЙ ФИНАНСОВОЙ СИСТЕМЫ - Карим_Хайдаров.
29.09.2019 - 07:41: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Михаила Делягина - Карим_Хайдаров.
26.09.2019 - 17:35: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Андрея Пешехонова - Карим_Хайдаров.
26.09.2019 - 16:35: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
26.09.2019 - 08:33: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от О.Н. Четвериковой - Карим_Хайдаров.
26.09.2019 - 06:29: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Ю.Ю. Болдырева - Карим_Хайдаров.
24.09.2019 - 03:34: ТЕОРЕТИЗИРОВАНИЕ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ - Theorizing and Mathematical Design -> ФУТУРОЛОГИЯ - прогнозы на будущее - Карим_Хайдаров.
24.09.2019 - 03:32: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> "Зенит"ы с "Протон"ами будут падать - Карим_Хайдаров.
Bourabai Research Institution home page

Боровское исследовательское учреждение - Bourabai Research Bourabai Research Institution