к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Голономная система

Голономная система - механическая система, в к-рой все наложенные связи (см. Связи механические)являются геометрическими (голономными). Эти связи налагают ограничения только на возможные положения точек и тел системы в разные моменты времени, но не на их скорости, и выражаются математически ур-ниями вида

1119926-192.jpg

где 1119926-193.jpg - координаты, t - время, k - число наложенных связей. Координаты точек системы должны при её движении удовлетворять как дифференциальным ур-ниям движения, так и ур-ниям связей (*). Связи наз. голономными и в том случае, когда они налагают ограничения на скорости точек системы, если ур-ния связи могут быть проинтегрированы и зависимости между скоростями сведены к зависимостям между координатами. Напр., при качении колеса по прямолинейному рельсу координата х центра колеса и угол 1119926-194.jpg поворота колеса вокруг его центра связаны соотношением 1119926-195.jpg, вытекающим из равенства 1119926-196.jpg , где 1119926-197.jpg- угловая скорость колеса,1119926-198.jpg-скорость его центра, R - радиус колеса. Однако это соотношение сразу интегрируется и даёт 1119926-199.jpg. Следовательно, указанная связь является голономной, а система - Г. с.

Если же связи системы налагают ограничения не только на возможные положения точек системы, но и на их скорости, и выражаются математически ур-ниями, к-рые не могут быть непосредственно проинтегрированы, то такие связи наз. неголономными, а система с такими связями наз. неголономной системой. Так, для шара, катящегося по шероховатой горизонтальной плоскости, ур-ния, выражающие тот факт, что точка касания шара имеет скорость, равную нулю, не могут быть проинтегрированы, и эта система является неголономной.

Разделение механич. систем на голономиые и неголономные весьма существенно, так как к Г. с. применимы многие сравнительно простые ур-ния механики и общие принципы, к-рые не справедливы для неголономных систем. Движение Г. с. может изучаться с помощью Лагранжа уравнений механики, Гамильтона уравнений, Гамильтона - Якоби уравнения, а также с помощью наименьшего действия принципа в форме Гамильтона - Остроградского или Мопертюи - Лагранжа. К Г. с. приложимы также все те общие теоремы механики и дифференциальные вариационные принципы механики ,к-рые справедливы и для неголономных систем.

Литература по голономным системам

  1. Жуковский H. E., Теоретическая механика, 2 изд., M.- Л., 1952;
  2. Николаи E. Л., Теоретическая механика, ч. 2 - Динамика, 13 изд., M., 1958;
  3. Лойцянский Л. Г., Лурье А. И., Курс теоретической механики, т. 2 - Динамика, в изд., M., 1983.
  4. Галилей Г., Соч., [пер. с итал.], т. 1, M.- Л., 1934;
  5. Эйлер Л., Основы динамики точки, пер. с лат., М.- Л., 1938;
  6. Д-Аламбер Щ., Динамика, пер. с франц., M.- Л., 1950;
  7. Лагранж Ж., Аналитическая механика, пер. с франц., т. 1-2, 2 изд., M.- Л., 1950;
  8. Жуковский H. E., Теоретическая механика, 2 изд., M.- Л., 1952;
  9. Бухгольц H. H., Основной курс теоретической механики, ч. 1, 9 изд., ч. 2, 6 изд., M., 1972;
  10. История механики с древнейших времен до конца XVIII в., M., 1971;
  11. Веселовский И. H., Очерки по истории теоретической механики, M., 1974;
  12. Механика в СССР за 50 лет, т. 1-3, M., 1968-72;
  13. Кочин H. E., Кибель И. A., Pозе H. В., Теоретическая гидромеханика, ч. 1, 6 изд., ч. 2, 4 изд., M., 1963;
  14. Прандтль Л., Гидроаэромеханика, пер. с нем., M., 1949;
  15. Лойцянский Л. Г., Механика жидкости и газа, 5 изд., M., 1978,
  16. Кларк Д., Макчесни M., Динамика реальных газов, пер. с англ., M., 1967;
  17. Седов Л. И., Механика сплошной среды, т. 1-2, 4 изд., M., 1983-84.
  18. Ляв А. Математическая теория упругости, пер. с англ., М.- Л., 1935;
  19. Стретт Дж. В. (лорд Рэлей), Теория звука, пер. с англ., 2 изд., т. 1-2, М., 1955;
  20. Боли Б., Уэйнер Дж., Теория температурных напряжений, пер. с англ., М., 1964;
  21. Трехмерные задачи математической теории упругости и термоупругости, под ред. В. Д. Купрадзе, 2 изд., М., 1976;
  22. Тимошенко С. П., Гудьер Дж., Теория упругости, пер. с англ., 2 изд., М., 1979;
  23. Хан X., Теория упругости. Основы линейной теории и её применение, пер. с нем., М., 1988.
  24. Соколовский В. В., Теория пластичности, 3 изд., М., 1969;
  25. Прагер В., Xодж Ф., Теория идеально пластических тел, пер. с англ., М., 1956;
  26. Xилл Р., Математическая теория пластичности, пер. с англ., М., 1956;
  27. Кадашевич Ю. И., Новожилов В. В., Теория пластичности, учитывающая остаточные микронапряжения, "ПММ", 1958, т. 22, с. 78;
  28. Ильюшин А. А., Пластичность. Основы общей математической теории, М., 1963;
  29. Ивлев Д. Д., Быковцев Г. И., Теория упрочняющегося пластического тела, М., 1971;
  30. Ревуженко А. Ф., Чанышев А. И., Шемякин Е. И., Математические модели упругопластических тел, в сб.: Актуальные проблемы вычислительной математики и математического моделирования, Новосиб., 1985.

С. M. Тарг

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

(время поиска примерно 20 секунд)

Знаете ли Вы, что только в 1990-х доплеровские измерения радиотелескопами показали скорость Маринова для CMB (космического микроволнового излучения), которую он открыл в 1974. Естественно, о Маринове никто не хотел вспоминать. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМАФорум Рыцари теории эфира
Рыцари теории эфира
 01.10.2019 - 05:20: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вячеслава Осиевского - Карим_Хайдаров.
30.09.2019 - 12:51: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Дэйвида Дюка - Карим_Хайдаров.
30.09.2019 - 11:53: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Владимира Васильевича Квачкова - Карим_Хайдаров.
29.09.2019 - 19:30: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
29.09.2019 - 09:21: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> КОЛЛАПС МИРОВОЙ ФИНАНСОВОЙ СИСТЕМЫ - Карим_Хайдаров.
29.09.2019 - 07:41: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Михаила Делягина - Карим_Хайдаров.
26.09.2019 - 17:35: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Андрея Пешехонова - Карим_Хайдаров.
26.09.2019 - 16:35: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
26.09.2019 - 08:33: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от О.Н. Четвериковой - Карим_Хайдаров.
26.09.2019 - 06:29: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Ю.Ю. Болдырева - Карим_Хайдаров.
24.09.2019 - 03:34: ТЕОРЕТИЗИРОВАНИЕ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ - Theorizing and Mathematical Design -> ФУТУРОЛОГИЯ - прогнозы на будущее - Карим_Хайдаров.
24.09.2019 - 03:32: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> "Зенит"ы с "Протон"ами будут падать - Карим_Хайдаров.
Bourabai Research Institution home page

Боровское исследовательское учреждение - Bourabai Research Bourabai Research Institution