к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Кинетические уравнения для плазмы

Кинетические уравнения для плазмы - замкнутая система ур-ний для одночастичных функций распределения частиц плазмы по координатам г и скоростям 2505-1.jpg (импульсам2505-2.jpg) совместно с Максвелла уравнениями для ср. напряжённостей эл--магн. полей, создаваемых частицами плазмы. Кинетич. (статистич.) подход к описанию состояния плазмы часто играет важную роль в описании макроскопич. свойств плазмы, к-рые не могут быть выявлены при гидродинамич. подходе. Напр., возникновение ленгмюровских волн при движении двух электронных пучков навстречу друг другу с равными скоростями описывается кинетич. теорией при рассмотрении пучков как двух жидкостей. Если же электроны в данном примере рассматривать при гидродинамич. подходе как единую жидкость с равной нулю ср. скоростью, то возникновение ленгмюровской неустойчивости нельзя предсказать.

Наиб. простыми являются К. у. для полностью ионизованной электронно-ионной плазмы - ур-ния для функций распределения 2505-3.jpg электронов (а=е), однозарядных ионов (a=i)и напряжённостей электрич. 2505-4.jpg и магн. 2505-5.jpg полей. Эти функции являются первыми моментами соответствующих микроскопич. случайных функций (см. Моменты: )микроскопич. фазовых плотностей 2505-6.jpg и микроскопич. напряжённостей полей 2505-7.jpg и 2505-8.jpg. Точные ур-ния для функций fa, E и В имеют вид

2505-9.jpg

Они не являются ещё замкнутыми, т. к. "интегралы столкновений" Ia(r, p, t)определяются вторыми моментами флуктуации случайных величин2505-10.jpg

2505-11.jpg

Ур-ния (1) справедливы и для релятивистской плазмы; в этом случае импульс и скорость связаны равенством2505-12.jpg

Для кулоновской плазмы, в к-рой потенциал взаимодействия заряж. частиц Фаb, определяется законом Кулона 2505-13.jpg , интегралы Iа могут быть выражены через двухчастичные корреляц. функции заряж. частиц gab:

2505-14.jpg

Если функцию gab выразить через Iа, то получается замкнутая система ур-ний для функций fa, Е, В. Это оказывается возможным, напр., для разреженной плазмы при не очень больших отклонениях от состояния равновесия, когда осн. роль играют мелкомасштабные флуктуации с радиусом корреляции 2505-15.jpg (дебаевского радиуса экранирования). В разреженной плазме число частиц ND в сфере с дебаевским радиусом много больше единицы. По этой причине, в отличие от разреженного газа, где осн. роль играют парные столкновения, в разреженной плазме с эфф. радиусом взаимодействия rD взаимодействие носит дальнодействующий коллективный характер. (Поэтому слова "интегралы столкновений" поставлены выше в кавычках.) Если длина релаксации lpел ("длина свободного пробега") и время релаксации ("время свободного пробега") 2505-16.jpg, определяемые интегралами столкновений в разреженной плазме, достаточно велики по сравнению с rD, 2505-17.jpg, т. е.

2505-18.jpg

то функции gab удаётся выразить через Iа.

Область интегрирования по k здесь ограничена условиями 2505-20.jpg (lЛ=e2/kT - т. н. квантовая длина). Левое неравенство есть следствие условия слабого взаимодействия, к-рое используется при выводе (5), а правое предполагает малую роль крупномасштабных флуктуации с радиусом корреляций 2505-21.jpg. Это оправдано при условии близости к равновесному состоянию. Используется и более общее выражение для интеграла столкновений (т. н. форма Балеску - Лепарда), в к-ром учитывается влияние электрич. поляризуемости плазмы. При этом отпадает необходимость в условии 2505-22.jpg . Интегралы столкновений (5) слабо зависят от выбора границ области интегрирования по k, т. к. величины lЛ и rD в окончат, результатах входят лишь под знаком логарифма (кулоновский логарифм).

Интегралы столкновений Iа для плазмы обладают свойствами

2505-23.jpg

к-рые обеспечивают сохранение полных плотности числа частиц, плотности импульса и плотности кинетич. энергии идеальной плазмы, а также возрастание энтропии при установлении равновесного состояния в изолированной плазме (Больцмана Н-теорема). Возможно обобщение К. у. на случай неидеальной плазмы, когда взаимодействие заряж. частиц определяет не только релаксац. процессы, но и даёт вклад в термодинамич. функции.

К. у. для плазмы существенно упрощаются в двух предельных случаях. Для случая, когда длины свободных пробегов lpел и соответствующие времена релаксации2505-24.jpgвелики по сравнению с характерными параметрами L и Т задачи, столкновениями частиц можно пренебречь, учитывая лишь коллективное взаимодействие частиц через ср. (самосогласованные) поля. Это т. н. бесстолкновительное приближение приводит к ур-нию Власова:

2505-25.jpg

Ур-ние Власова само по себе является обратимым. Однако поскольку бесстолкновительное приближение справедливо лишь для ограниченной плазмы, то необратимость возникает через диссипативные граничные условия, а также при усреднении нач. условий по бесконечно малому интервалу времени при переходе от микроскопич. фазовой плотности к одночастичной функции распределения. Бесстолкновительное приближение имеет широкую область применения - от высокотемпературной плазмы термоядерных установок до кос-мич. плазмы.

Во втором предельном случав, когда 2505-26.jpg и2505-27.jpg2505-28.jpg , возможен переход от К. у. для плазмы к соответствующим газодинамич. ур-ниям, учитывающим столкновения (см. Кинетическое уравнение Болъцмана).

Для описания сильно неравновесных процессов К. у. для плазмы уже недостаточны, т. к. существенными оказываются крупномасштабные флуктуации распределений частиц и напряжённостей поля. Простейшим примером их учёта служат ур-ния квазилинейной теории плазмы, используемые для описания слабой турбулентности плазмы.

Литература по кинетическим уравнениям для плазмы

  1. Власов А. А., О вибрационных свойствах электронного газа, "ЖЭТФ", 1938, т. 8. с. 291;
  2. Климонтович Ю. Л., Статистическая теория неравновесных процессов в плазме, М., 1964;
  3. его же, Кинетическая теория неидеального газа и неидеальной плазмы, М., 1975;
  4. его же. Статистическая физика, М., 1982;
  5. Балеску Р., Статистическая механика заряженных частиц, пер. с англ., М., 1967;
  6. Кадомцев Б. Б., Коллективные явления в плазме, М., 1976;
  7. Арцимович Л. А., Сагдеев Р. 3., Физика плазмы для физиков, М., 1979.

Ю. Л. Климонтович

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

(время поиска примерно 20 секунд)

Знаете ли Вы, что такое "Большой Взрыв"?
Согласно рупору релятивистской идеологии Википедии "Большой взрыв (англ. Big Bang) - это космологическая модель, описывающая раннее развитие Вселенной, а именно - начало расширения Вселенной, перед которым Вселенная находилась в сингулярном состоянии. Обычно сейчас автоматически сочетают теорию Большого взрыва и модель горячей Вселенной, но эти концепции независимы и исторически существовало также представление о холодной начальной Вселенной вблизи Большого взрыва. Именно сочетание теории Большого взрыва с теорией горячей Вселенной, подкрепляемое существованием реликтового излучения..."
В этой тираде количество нонсенсов (бессмыслиц) больше, чем количество предложений, иначе просто трудно запутать сознание обывателя до такой степени, чтобы он поверил в эту ахинею.
На самом деле взорваться что-либо может только в уже имеющемся пространстве.
Без этого никакого взрыва в принципе быть не может, так как "взрыв" - понятие, применимое только внутри уже имеющегося пространства. А раз так, то есть, если пространство вселенной уже было до БВ, то БВ не может быть началом Вселенной в принципе. Это во-первых.
Во-вторых, Вселенная - это не обычный конечный объект с границами, это сама бесконечность во времени и пространстве. У нее нет начала и конца, а также пространственных границ уже по ее определению: она есть всё (потому и называется Вселенной).
В третьих, фраза "представление о холодной начальной Вселенной вблизи Большого взрыва" тоже есть сплошной нонсенс.
Что могло быть "вблизи Большого взрыва", если самой Вселенной там еще не было? Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМАФорум Рыцари теории эфира
Рыцари теории эфира
 09.06.2020 - 19:25: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
09.06.2020 - 19:24: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
09.06.2020 - 19:23: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Пламена Паскова - Карим_Хайдаров.
09.06.2020 - 19:17: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Андрея Фурсова - Карим_Хайдаров.
09.06.2020 - 18:26: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> КОЛЛАПС МИРОВОЙ ФИНАНСОВОЙ СИСТЕМЫ - Карим_Хайдаров.
09.06.2020 - 18:13: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ЗА НАМИ БЛЮДЯТ - Карим_Хайдаров.
09.06.2020 - 06:30: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
09.06.2020 - 06:04: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
08.06.2020 - 18:18: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
08.06.2020 - 18:14: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Владимира Васильевича Квачкова - Карим_Хайдаров.
08.06.2020 - 18:08: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> КОМПЬЮТЕРНО-СЕТЕВАЯ БЕЗОПАСНОСТЬ ДЛЯ ВСЕХ - Карим_Хайдаров.
08.06.2020 - 07:32: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
Bourabai Research Institution home page

Боровское исследовательское учреждение - Bourabai Research Bourabai Research Institution