к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Ускорение Кориолиса

Ускорение Кориолиса (поворотное ускорение) - добавочное ускорение 2525-10.jpg, которое точка получает при т. н. сложном движении, когда подвижная система отсчёта перемещается не поступательно (см. Относительное движение). К. у. учитывает влияние переносного движения (движения подвижной системы отсчёта) на изменение относит. скорости точки 2525-11.jpg и влияние относит. движения точки на изменение её переносной скорости. Вектор 2525-12.jpg и его модуль вычисляются соответственно по ф-лам 2525-13.jpg и 2525-14.jpg= 2525-15.jpg, где 2525-16.jpg - угл. скорость поворота подвижной системы отсчёта относительно неподвижной, 2525-17.jpg - угол между 2525-18.jpg и 2525-19.jpg. Направление К. у. можно найти, спроектировав вектор 2525-20.jpg на плоскость, перпендикулярную к 2525-21.jpg, и повернув эту проекцию на 90° в сторону переносного вращения. Напр., у точки, движущейся в северном полушарии вдоль поверхности Земли с севера на юг, К. у., обусловленное суточным вращением Земли, направлено на восток.

Следует подчеркнуть, что ускорение Кориолиса точки - это часть её абс. ускорения, т. е. ускорения по отношению к основной (неподвижной) системе отсчёта, а не по отношению к подвижной. Так, напр., при движении вдоль поверхности Земли точка будет иметь К. у. по отношению к звёздам, а не к Земле.

Ускорение Кориолиса отсутствует, когда переносное движение является поступательным (2525-22.jpg=0) или когда относит. движение происходит вдоль прямой, параллельной оси переносного вращения (2525-23.jpg). Понятием К. у. пользуются в кинематике при определении полного ускорения точки по ускорениям составных движений, а также в динамике при изучении относит. движения (см. Кориолиса сила).

Литература по ускорению Кориолиса

  1. Жуковский Н. Е., Теоретическая механика, 2 изд., М--Л., 1952;
  2. Лойцянский Л. Г., Лурье А. И., Курс теоретической механики, т. 1 - Статика и кинематика, 8 изд., М., 1982;
  3. Галилей Г., Соч., [пер. с итал.], т. 1, M.- Л., 1934;
  4. Эйлер Л., Основы динамики точки, пер. с лат., М.- Л., 1938;
  5. Д-Аламбер Щ., Динамика, пер. с франц., M.- Л., 1950;
  6. Лагранж Ж., Аналитическая механика, пер. с франц., т. 1-2, 2 изд., M.- Л., 1950;
  7. Жуковский H. E., Теоретическая механика, 2 изд., M.- Л., 1952;
  8. Бухгольц H. H., Основной курс теоретической механики, ч. 1, 9 изд., ч. 2, 6 изд., M., 1972;
  9. История механики с древнейших времен до конца XVIII в., M., 1971;
  10. Веселовский И. H., Очерки по истории теоретической механики, M., 1974;
  11. Механика в СССР за 50 лет, т. 1-3, M., 1968-72;
  12. Кочин H. E., Кибель И. A., Pозе H. В., Теоретическая гидромеханика, ч. 1, 6 изд., ч. 2, 4 изд., M., 1963;
  13. Прандтль Л., Гидроаэромеханика, пер. с нем., M., 1949;
  14. Лойцянский Л. Г., Механика жидкости и газа, 5 изд., M., 1978,
  15. Кларк Д., Макчесни M., Динамика реальных газов, пер. с англ., M., 1967;
  16. Седов Л. И., Механика сплошной среды, т. 1-2, 4 изд., M., 1983-84.
  17. Ляв А. Математическая теория упругости, пер. с англ., М.- Л., 1935;
  18. Стретт Дж. В. (лорд Рэлей), Теория звука, пер. с англ., 2 изд., т. 1-2, М., 1955;
  19. Боли Б., Уэйнер Дж., Теория температурных напряжений, пер. с англ., М., 1964;
  20. Трехмерные задачи математической теории упругости и термоупругости, под ред. В. Д. Купрадзе, 2 изд., М., 1976;
  21. Тимошенко С. П., Гудьер Дж., Теория упругости, пер. с англ., 2 изд., М., 1979;
  22. Хан X., Теория упругости. Основы линейной теории и её применение, пер. с нем., М., 1988.
  23. Соколовский В. В., Теория пластичности, 3 изд., М., 1969;
  24. Прагер В., Xодж Ф., Теория идеально пластических тел, пер. с англ., М., 1956;
  25. Xилл Р., Математическая теория пластичности, пер. с англ., М., 1956;
  26. Кадашевич Ю. И., Новожилов В. В., Теория пластичности, учитывающая остаточные микронапряжения, "ПММ", 1958, т. 22, с. 78;
  27. Ильюшин А. А., Пластичность. Основы общей математической теории, М., 1963;
  28. Ивлев Д. Д., Быковцев Г. И., Теория упрочняющегося пластического тела, М., 1971;
  29. Ревуженко А. Ф., Чанышев А. И., Шемякин Е. И., Математические модели упругопластических тел, в сб.: Актуальные проблемы вычислительной математики и математического моделирования, Новосиб., 1985.

С. М. Тарг

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

(время поиска примерно 20 секунд)

Знаете ли Вы, что только в 1990-х доплеровские измерения радиотелескопами показали скорость Маринова для CMB (космического микроволнового излучения), которую он открыл в 1974. Естественно, о Маринове никто не хотел вспоминать. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМАФорум Рыцари теории эфира
Рыцари теории эфира
 01.10.2019 - 05:20: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вячеслава Осиевского - Карим_Хайдаров.
30.09.2019 - 12:51: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Дэйвида Дюка - Карим_Хайдаров.
30.09.2019 - 11:53: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Владимира Васильевича Квачкова - Карим_Хайдаров.
29.09.2019 - 19:30: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
29.09.2019 - 09:21: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> КОЛЛАПС МИРОВОЙ ФИНАНСОВОЙ СИСТЕМЫ - Карим_Хайдаров.
29.09.2019 - 07:41: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Михаила Делягина - Карим_Хайдаров.
26.09.2019 - 17:35: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Андрея Пешехонова - Карим_Хайдаров.
26.09.2019 - 16:35: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
26.09.2019 - 08:33: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от О.Н. Четвериковой - Карим_Хайдаров.
26.09.2019 - 06:29: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Ю.Ю. Болдырева - Карим_Хайдаров.
24.09.2019 - 03:34: ТЕОРЕТИЗИРОВАНИЕ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ - Theorizing and Mathematical Design -> ФУТУРОЛОГИЯ - прогнозы на будущее - Карим_Хайдаров.
24.09.2019 - 03:32: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> "Зенит"ы с "Протон"ами будут падать - Карим_Хайдаров.
Bourabai Research Institution home page

Боровское исследовательское учреждение - Bourabai Research Bourabai Research Institution