к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Магнитоупругие волны

Магнитоупругие волны - волны, возникающие в магнитоупорядоченных кристаллах - ферро- и антиферромагнетиках - из-за связи между магн. и упругими свойствами вещества. Упругие волны, т. е. колебания ионов в кристаллич. решётке относительно положения равновесия, в магнитоупорядоченных кристаллах сопровождаются колебаниями спинов, а следовательно, и колебаниями их магн. моментов; в свою очередь колебания спинов, т. е. спиновые волны ,вызывают смещение ионов. T. о. появляется связь между фононной и спиновой, или магнитной, подсистемами. В M. в. изменение магн. параметров состояния (напр., намагниченности) связано с изменением упругих параметров (деформации, механич. напряжения). Возникновение M. в.- одно из проявлений магнитоупру-гого взаимодействия, к-рое в первом приближении можно описать магнитоупругой энергией единицы объёма вещества:

3003-3.jpg

где3003-4.jpg- тензор магнитоупругих констант, имеющий размерность плотности энергии, uik - тензор деформаций, M0 - модуль вектора намагниченности, Ml / M0 и Мт/M0 - направляющие косинусы вектора намагниченности. В ф-ле (1) суммирование осуществляется по дважды встречающимся индексам. Здесь рассматриваются только те колебания, в к-рых модуль вектора M0 остаётся постоянным. Смешанная M. в., в к-рой переменными величинами являются как механические, так и магн. параметры состояния, т. е. и uik и M l , m , наиб, ярко проявляется в области частот, где длина 'упругой волны оказывается близкой по величине к длине спиновой волны (магнитоакустич. резонанс). Дисперсионное соотношение для спиновой волны имеет вид

3003-5.jpg

где g - магнитомеханическое отношение для электрона, А - обменная постоянная, 3003-6.jpg, H0 - напряжённость внешнего постоянного магн. поля, .N - размагничивающий фактор, k - волновой исктор,3003-7.jpg- угол между направлениями H0 и k. Дисперсионные соотношения для продольной и поперечной упругих волн имеют вид3003-8.jpg где сl и ct - скорости звука для продольной и поперечной упругих волн.

Особенности поведения M. в. можно рассмотреть на примере плоских волн, распространяющихся вдоль одного из рёбер решётки кубич. кристалла. Если внеш. магн. поле H0 ориентировано вдоль направления распространения волн (Q =0), то при наличии магнитоупругой связи дисперсионные соотношения для продольной и поперечной волн примут вид

3003-9.jpg

3003-10.jpg

Здесь b - магнитоупругая константа, 3003-11.jpg- плотность вещества, M s - намагниченность насыщения, (wсп - значение w, соответствующее решению дисперсионного соотношения (2). В этом случае продольная часть фононно-го спектра оказывается не связанной с магн. подсистемой (кривая 1 на рис.), а для поперечных волн возможны два решения k+ и k_, соответствующих двум знакам в соотношении (4). 3003-12.jpg

Пересечение дисперсионных кривых поперечной упругой (кривая 2) и спиновой (кривая 3)волн происходит при значении волнового числа k = k0, т. е.


3003-13.jpg


При k << k0 сплошная кривая 3-2 соответствует чисто спиновой волне, а кривая 2-3 - чисто поперечной упругой и обе волны распространяются со своими скоростями почти независимо друг от друга. При k >> k0 кривая 3-2 соответствует упругой волне, а кривая 2-3 - спиновой и снова волны почти не зависят друг от друга. В области пересечения существуют две связанные M. в., описываемые соотношением (4). При k ~k0 происходит расщепление дисперсионных кривых на две ветви с частотами


3003-14.jpg


(масштаб кривых на рис. преднамеренно сильно искажён, т. к. обычно3003-15.jpg


При фиксиров. частоте3003-16.jpgмагнитоупругое взаимодействие обусловливает возможность появления двух волн с волновыми числами k+ и k_, к-рые распространяются с разной скоростью. Это приводит к вращению плоскости поляризации линейно поляризованной сдвиговой волны. Угол3003-17.jpg, на к-рый поворачивается плоскость поляризации в волне, прошедшей расстояние z, равен


3003-18.jpg


где 3003-19.jpg


M. в. могут использоваться для преобразования звуковой волны в спиновую и обратно. В таких материалах, как, напр., монокристаллы ферритов-гранатов, на частотах ~109 Гц гораздо легче возбудить и принять спиновую волну, чем звуковую. Если образец феррита поместить в СВЧ-резонатор и возбудить в нём спиновую волну, то при наличии пост. магн. поля, неоднородного по пространству, по образцу побежит спиновая волна с переменным волновым числом k. При уменьшении напряжённости поля H в направлении распространения спиновой волны и при фиксиров. частоте w, задаваемой резонатором, величина k по мере распространения будет увеличиваться. Когда она достигнет значения k ~ k0, спиновая волна вследствие магнитоупру-гого взаимодействия превратится в магнитоупругую, а при дальнейшем увеличении k -в чисто упругую волну. Дальнейшее уменьшение H уже не будет влиять на характер распространения упругой волны. При таком преобразовании скорость распространения волн изменяется, поскольку скорость упругой волны гораздо больше, чем скорость спиновой волны. Если, начиная с к--л. точки пространства, величина H возрастает и, следовательно, волновое число для спиновых волн уменьшается, то может произойти обратное преобразование звуковой волны в спиновую. T. о., создавая в образце неоднородное магн. поле, можно преобразовывать друг в друга упругие и спиновые волны и тем самым изменять скорость распространения и время прохождения сигнала по образцу.

Взаимодействие спиновых и упругих волн осуществляется на высоких УЗ- и гиперзвуковых частотах, поскольку область существования спиновых волн ограничена снизу частотами ~108 Гц. Верх, граница для M. в. также определяется возможностью получения спиновых волн и составляет ~5·1010 Гц.

Наилучшим материалом для возбуждения M. в. являются ферриты, в частности монокристаллы железоит-триевого граната, обладающие высокой добротностью как магнитной, так и упругой подсистем. Эти кристаллы используются в акустоэлектронике для изготовления линий задержки сигналов СВЧ. Управляя посредством неоднородного магн. поля скоростью распространения сигнала (за счёт преобразования волн), можно создавать линии с переменным временем задержки, а используя усиление M. в., возникающее из-за нелинейности магнитоупругого взаимодействия, можно добиться значит, снижения потерь при распространении сигнала.

Литература по магнитоупругим волнам

  1. Ахиезер А. II., Барьяхтар В. Г., Пелетминский С. В., Спиновые волны, M., 1967;
  2. Физическая акустика, под ред. У. Мэзона, пер. с англ., т. 3, ч. Б, M., 1968, гл. 4; т. 4, ч. Б, M., 1970, гл. э;
  3. Mоносов Я. А., Нелинейный ферромагнитный резонанс, M., 1971;
  4. Такер Дж., Pэмpтон В., Гиперзвук в физике твердого тела, пер. с англ., M., 1975;
  5. Красильников В. А., Крылов В. В., Введение в физическую акустику, M., 1984.

А. Л. Полякова

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

(время поиска примерно 20 секунд)

Знаете ли Вы, что cогласно релятивистской мифологии "гравитационное линзирование - это физическое явление, связанное с отклонением лучей света в поле тяжести. Гравитационные линзы обясняют образование кратных изображений одного и того же астрономического объекта (квазаров, галактик), когда на луч зрения от источника к наблюдателю попадает другая галактика или скопление галактик (собственно линза). В некоторых изображениях происходит усиление яркости оригинального источника." (Релятивисты приводят примеры искажения изображений галактик в качестве подтверждения ОТО - воздействия гравитации на свет)
При этом они забывают, что поле действия эффекта ОТО - это малые углы вблизи поверхности звезд, где на самом деле этот эффект не наблюдается (затменные двойные). Разница в шкалах явлений реального искажения изображений галактик и мифического отклонения вблизи звезд - 1011 раз. Приведу аналогию. Можно говорить о воздействии поверхностного натяжения на форму капель, но нельзя серьезно говорить о силе поверхностного натяжения, как о причине океанских приливов.
Эфирная физика находит ответ на наблюдаемое явление искажения изображений галактик. Это результат нагрева эфира вблизи галактик, изменения его плотности и, следовательно, изменения скорости света на галактических расстояниях вследствие преломления света в эфире различной плотности. Подтверждением термической природы искажения изображений галактик является прямая связь этого искажения с радиоизлучением пространства, то есть эфира в этом месте, смещение спектра CMB (космическое микроволновое излучение) в данном направлении в высокочастотную область. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 18.10.2021 - 09:14: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
18.10.2021 - 09:14: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
18.10.2021 - 09:14: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ЗА НАМИ БЛЮДЯТ - Карим_Хайдаров.
18.10.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
18.10.2021 - 09:12: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
18.10.2021 - 09:12: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
18.10.2021 - 09:12: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
18.10.2021 - 09:11: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Анны Акуловой - Карим_Хайдаров.
17.10.2021 - 08:42: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от доктора Леонарда Колдвелла - Карим_Хайдаров.
16.10.2021 - 08:17: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
15.10.2021 - 20:48: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Игоря Шнуренко - Карим_Хайдаров.
15.10.2021 - 08:24: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> ПРОБЛЕМА КРИМИНАЛИЗАЦИИ ЭКОНОМИКИ - Карим_Хайдаров.
Боровское исследовательское учреждение - Bourabai Research Bourabai Research Institution