к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Методы определения масс небесных тел

В основе методов определения масс небесных тел лежит всемирного тяготения закон .В астрономии часто (но не всегда) можно пренебречь размерами небесных тел по сравнению с разделяющими их расстояниями и отличием их формы от точной сферы, т. е. уподобить небесные тела точечным массам.

Масса Земли может быть определена по величине ускорения свободного падения3011-62.jpg

3011-63.jpg

Величина3011-64.jpgопределяется гравиметрич. методами (см. Гравиметр, Гравиметрия), a R3 - на основе геодезич. измерений. Таким путём найдено, что масса Земли3011-65.jpg

3011-66.jpg г. Более точно M3 (вернее, произведение GМз)определяется по наблюдениям ИСЗ или космич. аппаратов. Помимо массы Земли, прямым гравиметрич. методом измерения силы тяжести на поверхности небесного тела можно определить массу Луны, а в дальнейшем всех планет и их спутников с твёрдой поверхностью.

Определение массы Земли является первым звеном в цепи определений масс др. небесных тел (Луны, планет, Солнца, а затем и др. звёзд). Массы этих тел находят, опираясь либо на 3-й закон Кеплера (см. Кеплера законы), либо на след, правило: расстояния к--л. масс от общего центра масс обратно пропорциональны самим массам. Это правило позволяет, в частности, определить массу Луны. Отношение расстояний центров Луны и Земли от центра масс система Земля - Луна (барицентра) равно3011-67.jpg 3011-68.jpg г.

Массу Солнца3011-69.jpgможно определить, применив 3-й

закон Кеплера к движению Земли (вместе с Луной) вокруг Солнца и к движению Луны вокруг Земли:

3011-70.jpg

где а - большие полуоси орбит, T - периоды (звёздные, или сидерические) обращения. Если пренебречь массой Земли по сравнению с массой Солнца, то отношение 3011-71.jpg оказывается равным 329390, отсюда3011-72.jpg

Ф-ла (1) даёт возможность сравнить массы Солнца и любой планеты, имеющей спутник, или массы двух планет, имеющих спутники. Массы планет, у к-рых нет спутников, определяют по возмущениям, оказываемым ими на движение соседних планет.

Массу звезды (помимо Солнца) можно определить со сравнительно большой надёжностью только в том случае, если она является физ. компонентом визуально-двойной звезды (см. Двойные звёзды ),расстояние до к-рой известно. 3-й закон Кеплера в этом случае

даёт сумму масс компонентов (в единицах солнечной массы):3011-73.jpg

где3011-74.jpg- большая полуось (в секундах дуги) относительной орбиты спутника вокруг главной (обычно более яркой) звезды, к-рую в этом случае считают неподвижной; P - период обращения в годах;3011-75.jpg- параллакс системы (в секундах дуги). Величина3011-76.jpg даёт значение большой полуоси орбиты в а. е. Если можно измерить угл. расстояния3011-77.jpgкомпонентов

от общего центра масс [напр., по положению каждого компонента относительно несколько более слабых звёзд (звёзд фона) или в случае заметного собств. движения центра масс, как у Сириуса и его спутника], то находят отношение масс, 3011-78.jpg, и, следо-

вательно, массу каждой звезды в отдельности.

Для определения малых значений3011-79.jpgу тесных двойных звёзд успешно применяются методы спекл-интер-ферометрии. Если компоненты двойной имеют примерно одинаковый блеск и сходные спектры, то полусумма масс даёт достаточно надёжную оценку массы каждого компонента и без дополнит, определения отношения3011-80.jpg

Для др. типов двойных звёзд (затменно-двойных и спектрально-двойных) имеется ряд возможностей приблизительно определить массы звёзд или оценить их ниж. предел.

Совокупность данных о массах компонентов более чем сотни двойных звезд разных типов позволила обнаружить важную статистич. масса - светимость зависимость. На основе этой зависимости оценивают массы одиночных звёзд по их светимостям.

Ещё один метод оценки массы звезды связан с измерением гравитац. красного смещения спектральных линий в поле тяготения. В сферически симметричном поле тяготения звезды оно эквивалентно доплеровскому красному смещению:

3011-81.jpg

где М3B- масса звезды в единицах массы Солнца, Rзв - радиус звезды в единицах радиуса Солнца, 3011-82.jpg - в км/с. Соотношение (2), наиб, успешно применяемое к белым карликам, проверено по ряду белых карликов, входящих в состав двойных систем. Для них были известны радиусы, массы и истинные лучевые скорости.

У т. н. астрометрич. двойных звёзд один компонент невидим. Массу невидимого (тёмного) спутника звезды можно оценить по колебаниям положения звезды, связанным с её движением около общего центра масс. Невидимые спутники звёзд имеют массы меньше3011-83.jpg и, вероятно, похожи на планеты. Возможно, что вместо одного тёмного спутника имеются два-три, а может быть, и большее число спутников (планет), т. е. планетные системы.

На релятивистском эффекте вращения линии апсид орбиты звезды-компаньона (подобного эффекту вращения линии апсид планетарных орбит, см. Тяготение)основан ещё один способ определения масс компонентов двойной звезды.

Массы звёзд заключены в пределах прибл. от 0,03 до 3011-84.jpg (теоретич. предел стабильной массы нор-

мальной звезды3011-85.jpg). Наиб, число звёзд имеет

массы от 0,3 до3011-86.jpg, много более половины звёзд вхо-

дят в двойные системы. Cp. масса звезды в ближайших окрестностях Солнца3011-87.jpg, т. е.3011-88.jpgг. Разли-

чие в массах звёзд оказывается много меньшим, чем их различие в светимостях (последнее может достигать десятков млн.). Сильно отличаются радиусы звёзд. В результате диапазон их ср. плотностей от3011-89.jpg (красные гиганты) до 3011-90.jpg(белые карлики) и даже

3011-91.jpg (нейтронные звёзды). Cp. плотность Солнца равна3011-92.jpg

Массу рассеянного звёздного скопления можно найти, сложив массы всех его членов, светимости к-рых определяют по их видимому блеску и расстоянию до скопления, а массы - по зависимости масса-светимость.

Массу шарового звёздного скопления Мск далеко не всегда можно оценить путём подсчёта звёзд, т. к. изображения звёзд центр, области большинства шаровых скоплений на фотографиях, полученных с оптим. экспозицией, сливаются в одно светящееся пятно. Есть методы оценки общей массы всего скопления, основанные на статистич. принципах. Так, напр., применение вириала теоремы позволяет оценить Мск по эфф. радиусу скопления R и ср. квадрату отклонения3011-93.jpg лучевой скорости отд. звёзд от её ср. значения (т. е. от лучевой скорости скопления как целого):

3011-94.jpg

(здесь3011-95.jpg

Если возможен подсчёт всех звёзд - членов шарового скопления, то общую массу скопления можно определить как сумму произведений3011-96.jpg- функция светимости этого скопления, т. е. функция, показывающая число звёзд, приходящихся на разл. интервалы значений абс. звёздных величин 3011-97.jpg (обычно их подсчитывают в интервалах, равных3011-98.jpg, а3011-99.jpg- масса, соответствующая данной звёздной величине3011-100.jpg по зависимости масса - светимость. T. о., общая масса скопления3011-101.jpg

где сумма взята от самых ярких до самых слабых членов скопления.

Метод определения массы Галактики Мг использует факт вращения Галактики. Устойчивость вращения позволяет предположить, в частности, что центро-стремит. ускорение Солнца определяется притяжением массы3011-102.jpg всего вещества Галактики внутри сферы с радиусом 3011-103.jpg, где3011-104.jpg- расстояние Солнца от центра Галактики, равное прибл. 3011-105.jpgсм. Cp. гравитац. ускорение Солнца 3011-106.jpgравно его центростре-мит. ускорению3011-107.jpg(без учёта влияния внеш. части Галактики и при условии эллипсоидальности поверхностей равной плотности в её внутр. части). Собств. галактич. скорость Солнца (т. н. круговая скорость на расстоянии r0 от центра) v0~ 220 км/с, отсюда

3011-108.jpg

Масса Галактики в сферич. объёме радиусом ~15 кпк, как показывают подобные расчёты, равна3011-109.jpg

3011-110.jpg . При этом учитывается также масса всей диффузной (рассеянной) материи в Галактике.

Масса спиральной галактики может быть определена по результатам изучения её кривой вращения (см. Вращение галактик ).Кривые вращения указывают на наличие больших масс невидимого (несветящегося) вещества (т. н. скрытой массы). Масса невидимого вещества галактик может в 10 раз и более превосходить массу светящегося (излучающего) вещества.

Для медленно вращающихся галактик, какими являются, напр., эллиптич. галактики, трудно получить кривую вращения, но зато можно по расширению спектральных линий оценить дисперсию скоростей звёзд в системе и, сопоставив её с истинными размерами галактики, по теореме о вириале оценить массу эллиптич. галактики.

Ещё один способ оценки масс галактик, входящих в двойные системы, аналогичен методу оценки масс компонентов спектрально-двойных звёзд. Используют также установленную статистич. зависимость между массой и интегральной светимостью галактик разл. типа (своего рода зависимость масса - светимость для галактик). Светимость определяется по видимой

интегральной звёздной величине галактики и расстоянию до неё, оценённому по величине красного смещения спектральных линий.

Известные ныне массы галактик заключены в пределах от3011-111.jpg- для т. н. карликовых галактик до 3011-112.jpg - для сверхгигантских эллиптич. галактик (напр., для галактики М87).

Общая масса галактик, входящих в скопления галактик, определяется суммированием масс галактик данного скопления с учётом их типов. С др. стороны, полная масса скопления может быть определена по теореме о вириале (по дисперсии лучевых скоростей галактик в скоплении в предположении, что галактики скопления являются гравитационно связанными между собой). Подобные определения показывают, что полная масса скопления (её наз. вириальной массой) больше суммы масс отд. галактик скопления. Это свидетельствует о том, что в межгалактич. пространстве в скоплениях содержится много невидимой (скрытой) массы. Сверхскопление галактик с центром в созвездии Девы обладает суммарной массой3011-113.jpg

Точность определения M. н. т. зависит от точности определения всех величин, входящих в соответствующие Формулы. Масса Земли найдена с погрешностью

3011-114.jpg , масса Луны - с погрешностью3011-115.jpg Погрешность определения массы Солнца также составляет 3011-116.jpg, она зависит от точности определения астр, единицы. Вообще, в значит, степени точность определения массы зависит от точности определения расстояний шкалы, а также расстояний между звёздами (в случае двойных звёзд), линейных размеров тел и т. д. Массы планет известны с погрешностью от 0,05 до 3011-117.jpg. Массы звёзд определены с погрешностью 3011-118.jpg . Неуверенность определения массы галактик можно характеризовать коэф. 2, даже если надёжно определено расстояние до них.

Литература по методам определения масс небесных тел

  1. Cагитов M. У., Постоянная тяготения и масса Земли, M., 1969;
  2. Физика космоса. Маленькая энциклопедия, 2 изд., M., 1986;
  3. Куликовский П. Г., Звёздная астрономия, 2 изд., M., 1985;
  4. Климишин И. А., Открытие Вселенной, M., 1987.

Я. Г. Куликовский

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, что только в 1990-х доплеровские измерения радиотелескопами показали скорость Маринова для CMB (космического микроволнового излучения), которую он открыл в 1974. Естественно, о Маринове никто не хотел вспоминать. Подробнее читайте в FAQ по эфирной физике.

Bourabai Research Institution home page

Боровское исследовательское учреждение - Bourabai Research Bourabai Research Institution