к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Объектив

Объектив (от лат. objectus - предмет) - оптич. система (или её часть), обращённая к объекту наблюдения или съёмки и создающая реальное, повёрнутое на 180° относительно объекта изображение. В зависимости от типа используемых оптич. деталей О. разделяют на линзовые, зеркальные, зеркально-линзовые и киноформные. Наиб. распространение получили линзовые О., обладающие широкими возможностями для получения разнообразных характеристик, что достигается увеличением кол-ва линз. Преимуществом зеркальных О. является принципиальное отсутствие хроматических аберраций и, как следствие, возможность использования для работы в области спектра, ограниченной лишь отражающей способностью зеркальных покрытий. Принципиальный недостаток зеркальных и зеркально-линзовых О. - экранирование (затенение) центр. части входного зрачка, за счёт чего ухудшается качество изображения и возникают дополнит. потери света. В киноформных О. наряду с линзами и зеркалами или без них используются киноформы - синтезиров. фазовые голограммы, аналогичные по своим аберрац. свойствам в монохроматич. свете линзам с асферич. поверхностями. Хроматич. аберрации киноформов не зависят от свойств материала, из к-рого они выполнены, а определяются (аналогично дифракционным решёткам)пространственной частотой структуры и спектральным диапазоном. Необычные дисперсионные свойства киноформов позволяют в сочетании с линзами, выполненными из обычных марок, оптических стёкол, получать О. апохроматы ,обладающие лучшим качеством изображения и более простой конструкцией, чем аналогичные О., содержащие кристаллич. среды и особые марки оптич. стекла. Применение киноформных О., не содержащих обычных линз и зеркал, возможно лишь в сочетании с лазерами, обладающими высокой монохроматичностью.
Фотографический О. или аналогичные О. киносъёмочных и телевизионных камер, приборов ночного видения, тепловизоров создают преим. уменьшенные изображения удалённых объектов на слое светочувствит. материала или на фотоэлектрич. приёмнике - телевизионной трубке, матрице или линейке фотоприёмников, фотокатоде электронно-оптич. прибора. Масштаб изображения пропорционален f' - фокусному расстоянию О., а освещённость обратно пропорц. квадрату диафрагменного числа К (К = f'/D, где D - диам. входного зрачка). Величину 1/К наз. относительным отверстием, а её квадрат - светосилой. Предельное значение диафрагменного числа, при к-ром возможно исправление аберраций, составляет K = 0,5, реально достигнутые значения K15009-90.jpg0,6, подавляющее большинство фотогр. О. имеют 3 > К15009-91.jpg1,2. Фотогр. разрешающая способность Nф фото- и кинообъективов зависит от коррекции аберраций, а также от разрешающей способности Ncсветочувствит. слоя и может быть вычислена по приближённой ф-ле 1/Nф15009-92.jpg1/N0 + 1/Nc, где N0 - визуальная разрешающая способность О. Для совр. фотообъективов Nф достигает 50 мм-1 в центре поля и 30 мм-1 для края при съёмке на фотоплёнке КН-1 (кинонегатив). Часть пространства или плоскости, точки к-рой изображаются О. с требуемым качеством, характеризуются угловым полем - плоским углом15009-93.jpg соответствующим телесному углу, соосному с оптич. осью и вершиной в центре входного зрачка. Угл. поле О. совр. фотоаппаратов составляет от 40° до 70°, аэрофотосъёмочных О. достигает 140°. На рис. 1 представлена оптич. схема совр. О. "Минитар" (f' = 32 мм, К = 2,8;15009-94.jpg= 68°) малогабаритного фотоаппарата с форматом кадра 24 мм X 36 мм. О. телевизионных камер и приборов ночного видения не отличаются принципиально от фотообъективов. В О. тепловизоров, работающих в дальней (8 - 14 мкм) ИК-области спектра, используются оптич. материалы, обладающие показателями преломления п > 2 (германий, селенид цинка, халькогенидные стёкла), что позволяет уменьшить кол-во линз по сравнению с аналогичными по характеристикам О. для видимой или ближней ИК-областей спектра. Малая дисперсия Ge позволяет создавать О., все линзы к-рых выполнены из этого материала, не принимая спец. мер для устранения хроматич. аберраций. Использование асферич. поверхностей германиевых линз позволяет сократить кол-во линз в О., имеющих К15009-95.jpg1,5, до двух.

15009-96.jpg

О. микроскопа - важнейшая часть его оптич. системы, создающая увелич. изображение объекта наблюдения в передней фокальной плоскости окуляра .Масштаб изображения обратно пропорционален фокусному расстоянию О. и составляет примерно от 1,5 до 100 крат. Предел разрешения микроскопа15009-97.jpg - мин. расстояние между центрами светящихся точек объекта, видимых раздельно, определяется дифракц. явлениями в О. и вычисляется по ф-ле15009-98.jpg где А - числовая апертура О., равная произведению показателя преломления среды, находящейся между объектом и О., на синус апертурного угла. Для О. микроскопов 0,0315009-99.jpgА15009-100.jpg1,4; диаметр поля изображения - от 18 мм до 32 мм. Простейшие О. микроскопов создают изображение, обладающее значит. кривизной, в результате чего при переходе от наблюдения центр. части поля к его краям необходима перефокусировка.
При фотографировании диаметр резкого изображения сокращается до 6 - 10 мм. Кривизну изображения в т. н. план-объективах устраняют существ. усложнением конструкции: на рис. 2 представлена схема высокоапертурного (А = 1,25) планахроматич. О. для металлографич. микроскопа.
15009-101.jpg

Особую группу образуют панкратические О. (иногда неточно наз. трансфокаторами), фокусное расстояние к-рых может плавно изменяться в широких пределах путём перемещения отдельных линз или групп их вдоль оптической оси. Такие О. применяются в цветных передающих камерах телевидения, в кино- и видеокамерах, а также и в фотоаппаратах. Соотношение между макс. и мин. значениями фокусного расстояния достигает 40 у О. телекамер, (6 - у О. кино- и видеокамер, 3 - у фотогр. О. Кол-во линз в панкратич. О. доходит до 30. Для уменьшения потерь света совр. О. просветляют (см. Просветление оптики).
О. зрительных труб, биноклей и телескопов создают промежуточное изображение удалённых объектов в передней фокальной плоскости окуляра. При диаметрах О., не превышающих 100 мм, наиб. распространённым является О., состоящий из двух склеенных линз. При больших диаметрах линзы не склеиваются. Начиная с диам. 500 - 800 мм используются зеркальные О., что обусловлено трудностями в получении однородных по показателю преломления крупных заготовок оптич. стекла. Макс. диаметр (6 м) имеет О. телескопа Специальной астр. обсерватории АН СССР на Северном Кавказе. Диафрагменные числа О. телескопов, как правило, К15009-102.jpg3; угл. поля15009-103.jpg предел разрешения - мин. угол15009-104.jpg(в секундах) между светящимися равнояркими точками (напр., звёздами), к-рые видны раздельно, определяется по ф-ле:15009-105.jpg= 140/D, где D измеряется в мм.
Проекционные О. создают увелич. изображения плоских объектов (кинокадров, слайдов, микрофильмов, кинескопов телевизоров) на отражающих и иросветных экранах. Оптич. системы этих О. аналогичны фотогр. О., но обычно обладают меньшими угл. полями и меньшими диафрагменными числами (К15009-106.jpg 1,8).
Репродукционные О., используемые в репрографии и для фотолитографии при произ-ве микроэлектронных схем, создают уменьш. изображения плоских оригиналов чертежей, текстов, рисунков, шаблонов; обладают повышенной разрешающей способностью, определяемой дифракцией и достигающей 1500 мм-1 для фотолитографич. О. и 150 мм-1 для репрографич. О.

15009-107.jpg

Столь высокие значения достигаются у первых за счёт существенного усложнения оптич. системы, у вторых за счёт сравнительно малых угл. полей и числовой апертуры. Оптическая схема О. для фотолитографии с разрешением ~ 1000 мм-1 на поле диам. 14 мм представлена на рис. 3.

Литература по объективам

  1. Тудоровский А. И., Теория оптических приборов, 2 изд., ч. 1 - 2, М. - Л., 1948 - 52;
  2. Слюсарев Г. Г., Методы расчета оптических систем, 2 изд., Л., 1969.

А. П. Грамматин

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

(время поиска примерно 20 секунд)


Знаете ли Вы, в чем ложность понятия "физический вакуум"?

Физический вакуум - понятие релятивистской квантовой физики, под ним там понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. Физическим вакуумом релятивистские теоретики называют полностью лишённое вещества пространство, заполненное неизмеряемым, а значит, лишь воображаемым полем. Такое состояние по мнению релятивистов не является абсолютной пустотой, но пространством, заполненным некими фантомными (виртуальными) частицами. Релятивистская квантовая теория поля утверждает, что, в согласии с принципом неопределённости Гейзенберга, в физическом вакууме постоянно рождаются и исчезают виртуальные, то есть кажущиеся (кому кажущиеся?), частицы: происходят так называемые нулевые колебания полей. Виртуальные частицы физического вакуума, а следовательно, он сам, по определению не имеют системы отсчета, так как в противном случае нарушался бы принцип относительности Эйнштейна, на котором основывается теория относительности (то есть стала бы возможной абсолютная система измерения с отсчетом от частиц физического вакуума, что в свою очередь однозначно опровергло бы принцип относительности, на котором постороена СТО). Таким образом, физический вакуум и его частицы не есть элементы физического мира, но лишь элементы теории относительности, которые существуют не в реальном мире, но лишь в релятивистских формулах, нарушая при этом принцип причинности (возникают и исчезают беспричинно), принцип объективности (виртуальные частицы можно считать в зависимсоти от желания теоретика либо существующими, либо не существующими), принцип фактической измеримости (не наблюдаемы, не имеют своей ИСО).

Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.

Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик Анри Пуанкаре, уже нельзя. Слишком много фактов противоречит этому.

Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.

Однако такая постановка является внутренне противоречивой (виртуальные частицы ненаблюдаемы и их по произволу можно считать в одном случае отсутствующими, а в другом - присутствующими) и противоречащей релятивизму (то есть отрицанию эфира, так как при наличии таких частиц в вакууме релятивизм уже просто невозможен). Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 01.10.2020 - 13:00: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
01.10.2020 - 07:41: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
01.10.2020 - 07:39: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
01.10.2020 - 07:38: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Владимира Васильевича Квачкова - Карим_Хайдаров.
01.10.2020 - 07:32: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
30.09.2020 - 07:07: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Пламена Паскова - Карим_Хайдаров.
29.09.2020 - 19:46: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Аркадия Мелконяна - Карим_Хайдаров.
29.09.2020 - 18:51: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
29.09.2020 - 18:50: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вячеслава Осиевского - Карим_Хайдаров.
29.09.2020 - 09:24: ФИЗИКА ЭФИРА - Aether Physics -> Магнит - Карим_Хайдаров.
29.09.2020 - 09:18: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Андрея Тиртхи - Карим_Хайдаров.
29.09.2020 - 07:37: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Проблема народного образования - Карим_Хайдаров.

Боровское исследовательское учреждение - Bourabai Research Bourabai Research Institution