к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Оптоэлектроника

Оптоэлектроника - область физики и техники, использующая эффекты взаимного преобразования элек-трич. и оптич. сигналов. Хотя эффекты преобразования световой энергии в электрическую (детектирование света с помощью фотоприёмников) и обратное преобразование (электролюминесцентные источники) были известны давно, термин "О." возник лишь после того, как эти преобразования стали использоваться в вычислит. технике, и прежде всего для взаимных превращений световых и электрич. сигналов при отображении, хранении, передаче и обработке информации. Термин "О." вошёл в употребление в 1960-х гг., когда появились приборы - оптроны ,в к-рых для обеспечения надёжных гальванич. развязок между электронными цепями используется пара "источник света (светодиод) - приёмник этого излучения".
Применение оптич. сигналов в принципе позволяет увеличить скорость передачи и обработки информации благодаря более высокой несущей частоте и возможности параллельного функционирования мн. каналов. Однако в наиб. степени пока используются такие свойства оптич. сигналов, как высокая помехозащищённость, обеспечение надёжных гальванических развязок между электронными цепями, слабое затухание в волоконных световодах и возможность острой фокусировки.
Поскольку оптоэлектронные приборы предназначены прежде всего для вычислит. техники и информац. систем, они должны обладать компактностью, малым потреблением энергии и высоким кпд.
Осн. элементами О. являются источники излучения (когерентные и некогерентные), фотоприёмники, модуляторы, дефлекторы, волоконные световоды и согласующие элементы, мультиплексоры и демультиплексоры, а также пространственно-временные модуляторы света (управляемые транспаранты), используемые для двумерного динамич. отображения и обработки информации.
Источники излучения. К некогерентным источникам излучения относят источники спонтанного излучения. Это - светодиоды (СД), из к-рых наиб. распространёнными являются СД на основе гетероструктур системы AlGaAs. Рекордный кпд этих СД превышает 20% (однако при ВЧ электрич. модуляции он уменьшается), их быстродействие достигает 0,1 нс. В отличие от когерентных источников СД обладают большой угл. апертурой и спектральной шириной излучения. Изготовляются матрицы СД.
Когерентными источниками излучения в О. служат гл. обр. инжекционные лазеры. Применяются гетероструктуры, из к-рых также наиб. распространёнными являются системы AlGaAs. Вследствие лазерного эффекта ширина линии15022-47.jpg ~ 0,1 нм, расходимость луча не более 30°, кпд до 50%. Длина волны меняется в зависимости от состава твёрдого раствора активной области. Наиб. освоен (на 1990) диапазон длин волн от
0,78 мкм до 1,55 мкм, хотя существуют более длинноволновые и коротковолновые лазеры. Частота модуляции излучения инжекц. лазеров достигает 20 Ггц. В монолитном (интегральном) виде изготовляются строчки (до 100 элементов на см-1) и матрицы инжекц. лазеров.
Приёмники излучения. В качестве них используются фотодиоды (ФД), гл. обр. pin-диоды и фотодиоды Шоттки. В pin-диодах быстродействие15022-48.jpg1 нc, квантовая эффективность до 90%, усиление фототока практически отсутствует, материалы: GaAs (15022-49.jpg0,8 мкм), InGaAs (15022-50.jpg = 1,3 - 1,55 мкм). В фотодиодах Шоттки быстродействие также15022-51.jpg1 нc; квантовая эффективность до 40%, материалы: п - GaAs, GaAs - AlGaAs, InGaAs (15022-52.jpg = 0,82 - 1,6 мкм).
Там, где требуется высокая чувствительность, применяются фототранзисторы и лавинные ФД. Они обладают внутр. усилением до 100 и более; материалы: Ge, InGaAs, InGaPAs, GaAs, Si. В качестве фотоприёмников используются также планарные фотосопротивления с малым зазором между омическими контактами и экстрагирующими электродами, быстродействие 80 - 200 пс, материалы: InGaAs (15022-53.jpg = 1,3 - 1,5 мкм), р - GaAs (15022-54.jpg 0,85 мкм) и др.
Особое значение для О. приобретают строчки и матрицы фотоприёмников, использующие эффект зарядовой связи в полупроводниках (см. Прибор с зарядовой связью ).Эти приёмники позволяют принимать, хранить нек-рое время и последовательно передавать при считывании оптич. сигналы. Такие фотоприёмники широко применяются для регистрации изображений и их последоват. передачи по каналам связи. По чувствительности они не уступают обычным фотоприёмникам. Осн. материал - Si.
Модуляторы. Как правило, в СД и инжекц. лазерах осуществляется внутр. модуляция путём изменения питающего тока. Для внеш. модуляции используется в осн. эл--оптич. эффект в LiNbО3. Однако полуволновое напряжение в этом кристалле более 1 кВ. Разрабатываются др. материалы - с меньшим полуволновым напряжением и технологически интегрально совместимые с излучателями системы AlGaAs и InGaPAs на тех же растворах.
Увеличение числа каналов связи в волоконных СД достигается также путём передачи информации по одному каналу на разных длинах волн, т. е. от разл. источников с соответствующим разделением на приёмных концах. С этой целью применяются мультиплексоры и демультиплексоры, к-рые обычно изготовляются в интегральном виде путём соединения или ветвления оптич. волноводов. Селекторами длин волн являются дифракц. решётки, вводящими и выводящими элементами - призмы. Материалом служит, как правило, LiNbО3 с вводимыми в него легирующими добавками для создания волноводов; большие надежды связываются с твёрдыми растворами соединений AIII Bv и AIIBVI.
Дефлекторы лазерного излучения - необходимые элементы в системах оптич. записи и считывания информации. Они могут быть применены также как модуляторы излучения. Используется либо эл--оптич. эффект в двулучепреломляющих кристаллах либо дифракция на акустич. волнах. Дефлекторы на основе эл--оптич. эффекта более быстродействующие, чем эл--акустические, но обладают меньшей эффективностью.
Пространственно-временные модуляторы света (ПВМС) - матрицы светоклапанных устройств, позволяющие создавать и обрабатывать двумерные изображения. Управление пропусканием ПВМС может осуществляться электрич. или магн. полями (эл--оптически или магн--оптически управляемые транспаранты соответственно) или слабыми световыми сигналами (оптически управляемые транспаранты). Наиб. распространение получили ПВМС на жидких кристаллах. Они обладают наим. полуволновым напряжением (~1В), но их быстродействие не превышает десятков мкс. Применение спец. керамик для ПВМС обеспечивает быстродействие до 10-7 с, но полуволповое напряжение значительно выше (~100 В).
Для передачи оптич. сигналов в О. возможно использование как свободного пространства, так и волоконных световодов, обеспечивающих исключительно высокую домехозащитность при потерях менее 1 дБ/км.
Увеличение кол-ва и ассортимента выпуска элементов О. происходит очень интенсивно, составляя ежегодный прирост ок. 20%, что связано с большим коммерч. выпуском систем, базирующихся на оптоэлек-тронных элементах. Наиб. распространение получили лазерные звукопроигрыватели, в к-рых информация записана в цифровом представлении на жёстких или гибких дисках (компакт-диски) и считывается острофокусируемым лучом инжекц. лазера. Выпускаются (в Японии) видеопроигрыватели, работающие по этому же принципу.
Большое значение приобретают оптоэлектронные элементы для волоконно-оптич. линий связи, к-рые должны заменить совр. кабельные линии связи на длинные и короткие дистанции, решить проблемы кабельного телевидения и видеотелефонов. Несколько свето-волоконных кабелей соединили Америку с Европой, прокладываются кабели через Тихий океан. Источниками световых сигналов в этих линиях являются инжекц. лазеры, приёмники - быстродействующие лавинные ФД; через неск. десятков км располагаются ретрансляц. узлы (лазер - фотоприёмник), компенсирующие ослабление и дисперсию световых сигналов.
О. позволяет создать перестраиваемые процессоры ,управляемые ПВМС и матрицами фотоприёмников, а также обеспечивает построение БИС и СБИС (см. Интегральная схема ),допускающих интеграцию в третьем (вертикальном) измерении. С О. связывают надежды на возможность дальнейшего совершенствования вычислит. техники: передача информации будет осуществляться оптич. сигналами, что позволит вести обработку одновременно по мн. параллельным каналам, близко расположенным друг к другу, но обладающим высокой помехозащитностью. Проводятся интенсивные исследования по созданию новых оптоэлектронных элементов, к-рые имели бы два устойчивых состояния с разл. оптич. свойствами (оптич. бистабильные элементы) и выполняли бы в оптике роль, аналогичную роли транзисторов в электронике. Создание таких элементов позволит начать конструирование оптических (или оптоэлектронных) вычислит. машин (ОВМ и ОЭВМ), превосходящих по производительности ЭВМ и способных выполнять 1012 операций в с и более.

Литература по оптоэлектронике

  1. 3и С. М., Физика полупроводниковых приборов, пер. с англ., кн. 1 - 2, М., 1984;
  2. Хансперджер Р., Интегральная оптика, пер. с англ., М., 1985;
  3. Морозов В. Н., Оптоэлектронные матричные процессоры, М., 1986;
  4. Пространственные модуляторы света, М., 1987;
  5. Инжекционные лазеры в системах передачи и обработки информации, М., 1987.

Ю. М. Попов

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

(время поиска примерно 20 секунд)

Знаете ли Вы, что такое "Большой Взрыв"?
Согласно рупору релятивистской идеологии Википедии "Большой взрыв (англ. Big Bang) - это космологическая модель, описывающая раннее развитие Вселенной, а именно - начало расширения Вселенной, перед которым Вселенная находилась в сингулярном состоянии. Обычно сейчас автоматически сочетают теорию Большого взрыва и модель горячей Вселенной, но эти концепции независимы и исторически существовало также представление о холодной начальной Вселенной вблизи Большого взрыва. Именно сочетание теории Большого взрыва с теорией горячей Вселенной, подкрепляемое существованием реликтового излучения..."
В этой тираде количество нонсенсов (бессмыслиц) больше, чем количество предложений, иначе просто трудно запутать сознание обывателя до такой степени, чтобы он поверил в эту ахинею.
На самом деле взорваться что-либо может только в уже имеющемся пространстве.
Без этого никакого взрыва в принципе быть не может, так как "взрыв" - понятие, применимое только внутри уже имеющегося пространства. А раз так, то есть, если пространство вселенной уже было до БВ, то БВ не может быть началом Вселенной в принципе. Это во-первых.
Во-вторых, Вселенная - это не обычный конечный объект с границами, это сама бесконечность во времени и пространстве. У нее нет начала и конца, а также пространственных границ уже по ее определению: она есть всё (потому и называется Вселенной).
В третьих, фраза "представление о холодной начальной Вселенной вблизи Большого взрыва" тоже есть сплошной нонсенс.
Что могло быть "вблизи Большого взрыва", если самой Вселенной там еще не было? Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМАФорум Рыцари теории эфира
Рыцари теории эфира
 01.10.2019 - 05:20: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вячеслава Осиевского - Карим_Хайдаров.
30.09.2019 - 12:51: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Дэйвида Дюка - Карим_Хайдаров.
30.09.2019 - 11:53: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Владимира Васильевича Квачкова - Карим_Хайдаров.
29.09.2019 - 19:30: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
29.09.2019 - 09:21: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> КОЛЛАПС МИРОВОЙ ФИНАНСОВОЙ СИСТЕМЫ - Карим_Хайдаров.
29.09.2019 - 07:41: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Михаила Делягина - Карим_Хайдаров.
26.09.2019 - 17:35: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Андрея Пешехонова - Карим_Хайдаров.
26.09.2019 - 16:35: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
26.09.2019 - 08:33: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от О.Н. Четвериковой - Карим_Хайдаров.
26.09.2019 - 06:29: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Ю.Ю. Болдырева - Карим_Хайдаров.
24.09.2019 - 03:34: ТЕОРЕТИЗИРОВАНИЕ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ - Theorizing and Mathematical Design -> ФУТУРОЛОГИЯ - прогнозы на будущее - Карим_Хайдаров.
24.09.2019 - 03:32: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> "Зенит"ы с "Протон"ами будут падать - Карим_Хайдаров.
Bourabai Research Institution home page

Боровское исследовательское учреждение - Bourabai Research Bourabai Research Institution