к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Ориентационные фазовые переходы

Ориентационные фазовые переходы - (спин-переориентационные переходы) - особый класс магнитных фазовых переходов, при к-рых меняется ориентация осей лёгкого намагничивания магнетиков при изменении внеш. параметров (температуры, магн. поля). Эти фазовые переходы происходят между магнитоупорядоченными фазами магнетика и относятся к т. н. переходам типа порядок - порядок. При О. ф. и. перестраивается магнитная атомная структура и изменяется магнитная симметрия кристаллов. О. ф. и., происходящие при изменении температуры, наз. спонтанными переходами, при изменении внеш. магн. поля - индуцированными переходами.
Простейшим примером спонтанного О. ф. п. является наблюдаемая в ряде магн. кристаллов переориентация спинов (спиновых магн. моментов) от одной кристаллографич. оси к другой при изменении температуры. Такие переходы наблюдаются, напр., в классич. ферромагнесике кобальте, в гадолинии, в интерметаллических соединениях RCo5 (где R - Nd, Pr, Dy, Tb), ферримагнетиках Mn2Sb и Ba2Co2Fe12О22 и в целом ряде редкоземельных магнптоупорядоченных кристаллов [1]. Спонтанная переориентация магн. моментов обусловлена в них температурной зависимостью энергии магнитной анизотропии.
В том случае, когда переориентация моментов осуществляется в нек-рой кристаллографич. плоскости кристалла, изменение термодинамич. потенциала Ф кристалла удобно представить в виде

15024-5.jpg

где К1 и К2 - константы анизотропии, изменение к-рых с температурой и приводит к О. ф. п.;15024-6.jpg - угол ориентации оси лёгкого намагничивания относительно кристаллография, осей в плоскости переориентации. Минимизация (1) по углу15024-7.jpgприводит к трём возможным состояниям системы (вблизи от О. ф. п. К2 считают не зависящей от температуры):

15024-8.jpg

15024-9.jpg

15024-10.jpg

Если К1 знакопеременна, а К2 > 0 в рассматриваемой области температур, то в кристалле могут существовать коллинеарные фазы I и II и угл. фаза III. Темп-ры Т1 [при к-рой К1(T1) + 2К2 = 0] и Т2 [при к-рой К12) = 0] есть точки О. ф. п. II15024-11.jpgIII и I15024-12.jpgIII соответственно. На рис. 1 приведены в качестве примеров температурные зависимости констант К1 и К2 гексагональных интерметаллич. соединений NdCo5 и РгСо5, на рис. 2 показаны температурные зависимости угла отклонения намагниченности от гексагональной оси для этих соединений. Переходы между фазами I15024-13.jpg111 и III15024-14.jpgII, возникающие при инверсии знака константы анизотропии К1, являются типичными примерами фазовых переходов, описываемых квантовой теорией [2].

15024-15.jpg

Рис. 1. Температурные зависимости констант анизотропии для NdCo5 (пунктир) и РrСо5 (сплошная линия).

Действительно, в случае, напр., перехода I15024-16.jpgIII, разложение термодинамич. потенциала (1) в ряд по15024-17.jpg [зависимость К1(Т) в рассматриваемой области температур предполагается линейной]:

15024-19.jpg

где15024-20.jpg(Т) = 2К1(Т) = 2К(Т - Т2)/Т2, К- константа,15024-21.jpg = 4К2,15024-22.jpg Угол15024-23.jpg здесь играет роль параметра порядка.

15024-18.jpg

Рис. 2. Температурные зависимости ориентации осей лёгкого намагничивания для NdCo5 и РrСо5.

Такую же форму принимает термодинамич. потенциал вблизи точки Т = Т1 при15024-24.jpg (либо15024-25.jpg). Т. о., переориентация магн. моментов, описываемая термодинамич. потенциалом (1), при К2 > 0 происходит непрерывно, путём двух фазовых переходов 2-го рода при темп-pax Т1 и Т2. Параметр15024-26.jpg (параметр порядка) меняется при этом непрерывно, а производная15024-27.jpg имеет разрывы на концах области переориентации (рис. 3,а). Очевидно, что вблизи температур Т1 и Т2, при к-рых происходят фазовые переходы 2-го рода, должны наблюдаться характерные особенности в поведении ряда термодинамич. величин: теплоёмкости, модуля Юнга и т. п., а также расходимость восприимчивости (описывающей отклик параметра порядка на термодинамически сопряжённое ему поле), обращение в нуль частоты колебаний параметра порядка (мягкая мода), замедление его релаксации и т. д. Такие аномалии в окрестности точки О. ф. п. действительно наблюдались, напр., в редкоземельных магнетиках [1]. При непрерывной переориентации магн. моментов угл. фаза III играет роль "буфера". Она позволяет магн. моментам непрерывно переходить из фазы I в фазу II. О. ф. п. относятся к переходам, для которых квантовая теория является очень хорошим приближением, т. к. флуктуации параметра порядка в критич. состоянии здесь можно не учитывать, поскольку они проявляются в очень узкой области температур (15024-30.jpgТ ~ 10-6 - 10-8K) вблизи точки перехода.

15024-28.jpg

Рис. 3. Температурная зависимость угла15024-29.jpg при ориентационном фазовом переходе: а - К2 > 0; б - К2 < 0.

При К2 < 0 фаза III является неустойчивой и температурные области существования фаз I и И перекрываются. С точки зрения симметрии, непосредств. непрерывный переход I15024-31.jpgII невозможен, т. к. для непрерывного перехода необходимо, чтобы группа магн. симметрии одной из фаз, участвующей в переходе, была подгруппой симметрии другой фазы, что для фаз I и II не выполняется. Следовательно, непосредств. переход I15024-32.jpgII может осуществляться только скачкообразно (фазовый переход 1-го рода) при Т = Тс, где Тс определяется условиями равенства термодинамич. потенциалов обеих фаз: Ф(15024-33.jpg = 0) = Ф(15024-34.jpg ), т. е. K1(Tc) + K2 = 0. Темп-ры Т1 и Т2, определяемые ур-ниями К12) = 0 и K1(T1)+ 2 = 0, есть границы областей существования метастабильных фаз (в предположении, что переход I15024-35.jpgII происходит однородно по образцу). Разложение Ф по15024-36.jpg (либо15024-37.jpg приводит к выражению (2), где15024-38.jpg = 4К2 < 0, что, согласно квантовой теории, является признаком фазового перехода 1-го рода. На рис. 3(б) изображена зависимость15024-39.jpg(Т)для этого случая.
Внеш. магн. поле Нвн оказывает существ. влияние на О. ф. п., подавляя их или, наоборот, способствуя их возникновению. Поле Нвн может также индуцировать О. ф. п. Напр., в целом ряде антиферромагнетиков при достаточно большом (критическом) значении магн. поля Нс, приложенного вдоль оси антиферромагнетизма, происходит переориентация спинов, и намагниченность магн. подрешёток устанавливается перпендикулярно направлению действующего магн. поля [3] (см. Спин-флоп переход). Индуцированные полем О. ф. п. наблюдались также в слабых ферромагнетиках, в частности в редкоземельных ортоферритах, для к-рых были исследованы разнообразные фазовые диаграммы Нс- Т [1].

Литература по ориентационным фазовым переходам

  1. Орнентационные переходы в редкоземельных магнетиках, М., 1979;
  2. Боровик-Романов А. С., Антиферромагнетизм, в кн.: Итоги науки. Сер. физ-мат. науки, в. 4, М., 1962.

А. М. Кадомцева

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

(время поиска примерно 20 секунд)

Знаете ли Вы, как разрешается парадокс Ольберса?
(Фотометрический парадокс, парадокс Ольберса - это один из парадоксов космологии, заключающийся в том, что во Вселенной, равномерно заполненной звёздами, яркость неба (в том числе ночного) должна быть примерно равна яркости солнечного диска. Это должно иметь место потому, что по любому направлению неба луч зрения рано или поздно упрется в поверхность звезды.
Иными словами парадос Ольберса заключается в том, что если Вселенная бесконечна, то черного неба мы не увидим, так как излучение дальних звезд будет суммироваться с излучением ближних, и небо должно иметь среднюю температуру фотосфер звезд. При поглощении света межзвездным веществом, оно будет разогреваться до температуры звездных фотосфер и излучать также ярко, как звезды. Однако в дело вступает явление "усталости света", открытое Эдвином Хабблом, который показал, что чем дальше от нас расположена галактика, тем больше становится красным свет ее излучения, то есть фотоны как бы "устают", отдают свою энергию межзвездной среде. На очень больших расстояниях галактики видны только в радиодиапазоне, так как их свет вовсе потерял энергию идя через бескрайние просторы Вселенной. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМАФорум Рыцари теории эфира
Рыцари теории эфира
 01.10.2019 - 05:20: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вячеслава Осиевского - Карим_Хайдаров.
30.09.2019 - 12:51: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Дэйвида Дюка - Карим_Хайдаров.
30.09.2019 - 11:53: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Владимира Васильевича Квачкова - Карим_Хайдаров.
29.09.2019 - 19:30: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
29.09.2019 - 09:21: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> КОЛЛАПС МИРОВОЙ ФИНАНСОВОЙ СИСТЕМЫ - Карим_Хайдаров.
29.09.2019 - 07:41: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Михаила Делягина - Карим_Хайдаров.
26.09.2019 - 17:35: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Андрея Пешехонова - Карим_Хайдаров.
26.09.2019 - 16:35: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
26.09.2019 - 08:33: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от О.Н. Четвериковой - Карим_Хайдаров.
26.09.2019 - 06:29: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Ю.Ю. Болдырева - Карим_Хайдаров.
24.09.2019 - 03:34: ТЕОРЕТИЗИРОВАНИЕ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ - Theorizing and Mathematical Design -> ФУТУРОЛОГИЯ - прогнозы на будущее - Карим_Хайдаров.
24.09.2019 - 03:32: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> "Зенит"ы с "Протон"ами будут падать - Карим_Хайдаров.
Bourabai Research Institution home page

Боровское исследовательское учреждение - Bourabai Research Bourabai Research Institution