к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Поликритическая точка (мультикритическая точка)

Поликритическая точка (мультикритическая точка) - особая точка на диаграмме состояния физ. системы, допускающей существование нескольких упорядоченных фаз. Разл. виды упорядочения в этих фазах (конфигурационное, ориентационное, магнитное, сверхпроводящее и др.; см. Дальний и ближний порядок)характеризуются многокомпонентным параметром порядка4002-103.jpg Классификация П. т. зависит от числа термодинамич. параметров состояния, необходимых для описания системы на макроскопич. уровне (см. Равновесие термодинамическое). П. т. возникают и на диаграмме состояния в пространстве параметров гамильтониана ,характеризующих систему на микроскопич. уровне (см., напр., Ренормализационная группа).

Термодинамич. параметры состояния можно разделить на внутренние 4002-104.jpg (Т - темп-pa, 4002-105.jpg- давление Р, поляризация4002-106.jpg намагниченность М, хим. потенциал m и т. п.) и сопряжённые им внешние4002-107.jpg 4002-108.jpg - объём V, электрич. поле Е, магн. поле Н, концентрация с). Условия термодинамич. устойчивости 4002-109.jpg (минимум термодинамич. потенциала F)выделяют на диаграмме состояния области существования тех или иных упорядоченных фаз. Физ. системы условно могут быть разделены на два типа: если в системах 1-го типа отличные от 0 равновесные значения компонент параметра порядка4002-110.jpgзависят непосредственно от величин 4002-111.jpgто в системах 2-го типа - ещё и косвенно благодаря взаимодействию (связи) fi с другими ("скрытыми") неупорядоченными степенями свободы той же системы. К системам 1-го типа относятся, напр., магнетики, в к-рых магн. упорядочение определяется взаимодействием только в спиновой подсистеме. Для систем 2-го типа существен учёт взаимодействия с решёточной подсистемой (магнигтстрикция), подсистемой электронов проводимости или примесей (см. Косвенное обменное взаимодействие). Системы 2-го типа характеризуются, как правило, конкурирующими взаимодействиями и допускают неск. видов упорядочения (см., напр., Магнитный фазовый переход, Магнитные сверхпроводники, Ориентационные фазовые переходы, Сегнетоэлектрики, Жидкие кристаллы, Спиновой плотности волны, Спиновое стекло, Магнитные полупроводники).

При изменении величин 4002-112.jpg (или4002-113.jpg между упорядоченными фазами могут происходить фазовые переходы (ФП) - спонтанные (по Т), индуцированные (по Р, К или Н) или концентрационные (по с). Равновесие фаз при ФП характеризуется равенством термодинамич. потенциалов; при этом их первые (для ФП 1-го рода) и вторые (для ФП 2-го рода) производные могут иметь разрывы или др. особенности. В простейшем случае спонтанный ФП 2-го рода происходит в изолиров. точке Тс (см. Кюри точка, Нееля точка. Сверхтекучесть, Сверхпроводимость). Если действие обобщённых полей4002-114.jpgне устраняет особенности термодинамич. потенциала и его производных, то на диаграмме состояний возникает линия (поверхность) ФП - фазовая граница4002-115.jpg

Классификация. Возможны два вида П. т.: 1) ФП вдоль фазовой границы сохраняет изоморфность (род ФП не меняется), что обычно характерно для систем 1-го типа. П. т. определяется пересечением двух или более фазовых границ; 2) изоморфность ФП вдоль фазовой границы нарушается. П. т. представляет собой особую точку на линии ФП, в к-рой это происходит. Такая ситуация реализуется в осн. в системах 2-го типа. Примером изоморфных линий ФП в случае равновесия двух фаз - упорядоченной (дальний порядок) и неупорядоченной (ближний порядок) - является линия ФП 2-го рода в одноосном ферромагнетике (рис. 1), а для ФП 1-го рода фазовая граница жидкость - тв. тело (рис. 2). Фазовая граница жидкость - газ обладает особенностью: она заканчивается критической точкой, аналогичной точке ФП 2-го рода. В критической точке нарушается изоморфность ФП, поэтому она - простейший случай П. т. 2-го вида. Полная диаграмма состояния обнаруживает др. особенность: тройную точку. Это П. т. 1-го вида, в к-рой пересекаются три фазовые границы и находятся в равновесии 3 фазы. В более общем случае полиморфизма возможны другие П. т., определяемые пересечением линий ФП между разл. кристаллич. модификациями.

4002-116.jpg

Рис. 1. Фазовая диаграмма одноосного ферромагнетика в магнитном поле H, перпендикулярном оси анизотропии,4002-117.jpg точка Кюри.

Рис. 2. Фазовая диаграмма системы газ (II) - жидкость (I)-· твёрдое тело (III).



Обозначения и определения некоторых поликритических точек (рис. 2 и 3)

Обозначение

Название и пример

Определение

КТ

Критическая точка. Рис. 2

Точка нарушения изоморфно-сти ФП 1-го рода, эквивалентная ФП 2-го рода.

ТТ

Тройная точка. Рис. 2

Точка пересечения трёх линий ФП 1-го рода.

БКТ

Бикритическая точка. Рис. 3,а

Точка пересечения двух линий ФП 2-го рода и одной линии ФП 1-го рода.

ТКТ

Трикритическая точка. Рис. 3,в, г

Точка пересечения трёх линий ФП 2-го рода и одной линии ТТ (точка перехода линии ФП 1-го рода в линию ФП 2-го рода).

ЧКТ

Четырёхкрити-ческая точка. Рис. 3,Э

Точка пересечения четырёх линий ФП 2-го рода.

тл


Точка Лифшица. Рис. 3,о

БКТ, для к-рой одна из упорядоченных фаз является несоразмерной.


ТО

Точка окончания Рис. 3,е

Точка, в к-рой линия ФП 2-го рода пересекает линию ФП 1-го рода.

При расширении фазового пространства (напр., при добавлении термодинамич. параметра 4002-118.jpg) фазовая диаграмма может существенно модифицироваться. Фазовая диаграмма с ТКТ принимает вид симметричной фазовой поверхности ("крылья бабочки", рис. 4, а); в ТКТ сходятся три линии ФП 2-го рода (это объясняет её назв.). В более общем случае фазовая диаграмма принимает вид, изображённый на рис. 4 (б), где возникают линии ТКТ, КТ, ТО. По-иному выглядят П. т. и при построении фазовой диаграммы в пространстве термодинамич. переменных 4002-119.jpg Т вместо 4002-120.jpg Т.

Фазовая диаграмма с ТКТ принимает вид, изображённый на рис. 5, где область III соответствует смешанному (двухфазному) состоянию.

В общем случае в П. т. сходится более трёх линий ФП, вдоль каждой из к-рых сосуществуют (находятся в термодинамич. равновесии) две фазы. В самой П. т. могут сосуществовать 4002-121.jpgфаз, что вполне согласуется с Гиббса правилом фаз. Согласно этому правилу, число термодинамич. степеней свободы4002-122.jpgсистемы (число независимых переменных, к-рые можно изменять, не нарушая термодинамич. равновесия) должно быть неотрицательным,4002-123.jpgВ общем случае 4002-124.jpg= n + 2 + k, где h - число компонент системы, число 2 отражает кол-во термодинамич. параметров состояния, одинаковых для всех фаз (напр., темп-pa Т и давление Р), k соответствует наличию др. независимых обобщённых внеш. или внутр. параметров. Т. о., в общем случае r4002-125.jpgn + 2 + k (напр., для ТТ n = 1, k = О, r4002-126.jpg3, а для ТКТ k = 1 и r4002-127.jpg4).

4002-128.jpg

Рис. 3. Фазовые диаграммы (X-T) с поликритическими точками. Сплошная линия изображает линию фазового перехода 1-го рода, штриховая - 2-го рода. Римскими цифрами (I, II, III, IV) обозначены различные фазы, одна из которых (обычно II) полностью неупорядоченная; X - внешний термодинамический параметр.

4002-129.jpg

Рис. 4. Поликритические точки на трёхмерных фазовых диаграммах: а - 1-4-2-5 - поверхность фазового перехода 1-го рода, 1-2 - линия тройных точек, б - 1-2 - линия трикри-тических точек, 2-3 - линия критических точек, 2-4 - линия точек окончания, А - критическая точка 4-го порядка.

Рис. 5. Фазовая диаграмма (x - Т) с трикритической точкой, x - внутренний термодинамический параметр. При Т < Т* фазовый переход происходит со скачком параметра 4002-130.jpg = xII - хI (фазовый переход 1-го рода), при Т > Т* непрерывно (фазовый переход 2-го рода).

4002-131.jpg

Примеры. Экспериментально изучено достаточно много физ. систем, обнаруживающих П. т. Наиб. известным примером системы с ТКТ является смесь изотопов4002-132.jpgдля к-рой обобщённой силой X является разность хим. потенциалов этих изотопов, а внутр. параметром c - концентрация изотопа4002-133.jpg (фазы I и II - соотв. сверхтекучая и нормальная). Др. примерами может быть сегнетоэлектрич. упорядочение в КН2РО4(Х - внутр. электрич. поле, x - поляризация), структурное упорядочение в соединениях Nb3Sn, V3Si (X - одноосное давление, x - компоненты тензора деформации).

В одноосных антиферромагнетиках X - внеш. магн. поле вдоль оси лёгкого намагничивания, x - проекция намагниченности на эту ось. При достаточно сильной анизотропии (FeCl2, DyPO4) имеет место фазовая диаграмма с ТКТ (рис. 3, в). Фаза I - антиферромагнитная, II - "псевдоферромагнитная" (см. Метамаг-нетик, рис. 1). При слабой анизотропии (MnF2, СиС12·2Н20) реализуется БКТ(рис. 3, а), фазы: I - антиферромагнитная, II - парамагнитная, III - спин-флоп (см. Антиферромагнетизм ,рис. 4). В промежуточном случае возможна фазовая диаграмма, изображённая на рис. 3 (г): с ростом анизотропии точка ТО движется в сторону более низких температур до тех пор, пока фаза спин-флоп не исчезнет; с уменьшением анизотропии точка ТО движется в сторону более высоких температур до слияния с ТКТ, в результате чего возникает БКТ. При наличии дополнительно анизотропии более высокого порядка (K2MnF4, СоВr2-2Н2О) линия ФП 1-го рода на рис. 3 (а) расщепляется на две линии ФП 2-го рода, и БКТ переходит в ЧКТ (рис. 3, д); аналогичное явление имеет место и при наложении на слабоанизотропный антиферромагнетик наклонного поля, образующего ненулевой угол с осью анизотропии. ТЛ наблюдается при ФП в состоянии волны спиновой плотности в чистом Сг, а также при переходах в магн. модулированные структуры редкоземельных металлов и их соединений (см. Несоразмерная магнитная структура).

Феноменологическое описание П. т. возможно в рамках квантовой теории фазовых переходов. В простейшем случае физ. система описывается однокомпонентным вещественным (скалярным) параметром порядка f; как правило, система обладает симметрией относительно замены4002-134.jpg Тогда уд. термодинамич. потенциал

4002-135.jpg вблизи точек ФП имеет вид разложения по чётным степеням f :

4002-136.jpg

где F0(T, {Xi})- несингулярная часть термодинамич. потенциала, коэф. a2n = а2п(Т, {Xi}) зависят от температуры и параметров {Хi}, h - внеш. поле, термодинамически сопряжённое f.

Обычная КТ соответствует учёту в (1) членов 2-го и 4-го порядков (модель f4) и определяется условиями h = О, аг = О, а4> 0. Выше КТ реализуется высокосимметричная фаза с f = 0, ниже - единственная низкосимметричная фаза с ненулевым равновесным значением параметра порядка f0, определяемым из условия 4002-137.jpg= 0 и равным 4002-138.jpg= -a2/a4 (условия устойчивости этой фазы4002-139.jpg9 0, т. е. а2 80, a4 > 0). Учёт члена 6-го порядка са6>0 (модель f6) приводит к появлению двух различных низкосимметричных фаз с равновесными значениями параметра порядка:

4002-140.jpg

Условия устойчивости для этих фаз: а2 8 0, a4 >0 (для фазы4002-141.jpg и (для фазы 4002-142.jpg Область устойчивости4002-143.jpgвысокосимметричной фазы (f = 0), как и в модели f4, определяется условием а2>0.

ФП из высокосимметричной фазы в низкосимметричную 4002-144.jpg (как и для обычной КТ) происходит при а2 = 0 и является ФП 2-го рода. ФП в др. фазу4002-145.jpgпроисходит при условии 4002-146.jpg и является ФП 1-го рода.

Пересечение линий этих ФП определяет ТКТ, к-рая, т. о., описывается условиями а2 = a4 = О, a6 > 0 и является единственной на фазовой плоскости {X, Т}. В модели f8 при a2 = a4 = a6= 0, а8> 0 можно получить П. т., в к-рой сходятся линии ТКТ, КТ и ТО (рис. 4, б). Вообще, оставляя в разложении (1) члены до4002-147.jpgвключительно, можно получить П. т., называемую КТ порядка q, если положить а2 = а4 = ... = = a2(q-1) = 0,4002-148.jpg> 0; тогда обычная КТ является КТ 2-го порядка, а ТКТ - КТ 3-го порядка. В такой П. т. сходятся линии КТ порядка q - 1 (соответствующие условию4002-149.jpgи линия ФП 1-го рода с условием4002-150.jpg<0. Наличие внеш. поля h делает возможным ТКТ и в модели f4; при этом линия h = 0, а2 > 0 - линия ФП 2-го рода, а линия h = 0, а2 < 0 - линия ФП 1-го рода (независимо от знака а4); пересечение этих линий в точке h = 0, а2 = 0 определяет ТКТ.

При двух скалярных компонентах f1 и f2 разложение (1) содержит дополнит. смешанный член вида 4002-151.jpg поэтому при больших l возникает БКТ, а при малых - ЧКТ. При одном векторном f1 и одном скалярном f2 параметрах порядка простейший смешанный член имеет вид4002-152.jpgчто приводит к эфф. перенормировке внеш. поля h и появлению ТКТ. Аналогично возможна перенормировка и др. слагаемых выражения (1) - напр., смена знака а4, приводящая к ТКТ в модели f6 за счёт исключения "скрытых" степеней свободы с помощью условия термодинамич. равновесия.

Описание ТЛ на основе разложения (1) требует учёта производных f по координатам (градиентов) [напр., в виде s1(fI)2 + s2(fII))2, s2 > 0]. Такой случай имеет место при описании волн зарядовой плотности, магнитной атомной структуры типа спиновой волны и др. ФП 2-го рода из высокосимметричной фазы fq= О в однородную ннзкосимметричную фазу f0= const4002-153.jpgО происходит при в2 = О, s1> О, а в неоднородную (несоразмерную) низкосимметричную фазу4002-154.jpg здесь 4002-155.jpg r - пространственная координата, волновой вектор | k0| =4002-156.jpg при а2 = 0, s2 < 0. Переход между двумя низкосимметричными фазами является ФП 1-го рода, определяется условиями a2 = 0, s1 = 0. В случае двухкомпонентного параметра порядка (f1,f2) при учёте градиентных членов чётных степеней 4002-157.jpgстановится возможным описание произвольных геликоидальных, или модулированных магн. структур. Учёт линейных градиентных членов (инвариантов Лифшица) s1(f1f2' - f1'f2) приводит к солитонной картине каскадного перехода в модулиров. фазу (т. н. чёртова лестница).

Критические показатели. Микроскопич. модели (напр., Двумерные решёточные модели)применяются для более точного количественного описания П. т. При этом используются критические показатели (индексы), приближённо вычисляемые с помощью эпсилон-разложения в рамках метода ренормализац. группы. Наличие П. т. означает возникновение неустойчивости фиксиров. точки семейства фазовых траекторий гамильтониана, что приводит к изменению характера ФП и описывающих его критич. показателей, а также верх. критич. размерности dc, определяющей применимость квантовой теории. (Уже в рамках квантовой теории критич. показатель b, описывающий температурную зависимость параметра порядка вблизи П. т., меняет значение от b = 1/2 для КТ до b = 1/4 для ТКТ.) Изменение dc (для КТ dc = 4, для ТКТ dc = 3 указывает на малую роль флуктуации вблизи ТКТ в реальных физ. системах; для КТ порядка 4002-158.jpg значение4002-159.jpg Для описания поведения термодинамич. величин вблизи обычной КТ (КТ 2-го порядка) достаточно 2 индексов (напр.,4002-160.jpg- критич. показатели теплоёмкости и восприимчивости), тогда как для КТ порядка q необходимо q индексов. Остальные 4002-161.jpg- 2 независимых критич. индекса 4002-162.jpg где 4002-163.jpg появляющиеся у КТ высших порядков, наз. кроссоверными.

В рамках гипотезы скейлинга (см. Масштабная инвариантность)термодинамич. потенциал вблизи П. т. описывается зависимостью

4002-164.jpg

где4002-165.jpg- темп-pa КТ порядка4002-166.jpgщелевой показатель 4002-167.jpg- выражается через величины4002-168.jpgВеличина4002-169.jpg как правило,

наз. "скейлинговым полем", его роль пренебрежимо мала 4002-170.jpg когда<4002-171.jpg 0 или при 4002-172.jpg> 0 вдали от П. т. Влияние "скейлинговых полей" существенно в переходной области вблизи температуры кроссовера Тk, определяемой условием4002-173.jpg При дальнейшем приближении температуры к4002-174.jpg1) происходит кроссовер, т. е. полное изменение критич. поведения термодинамич. величин.

Литература по поликритическим точкам (мультикритическим точкам)

  1. Pfeuty P., Toulouse G., Introduction to the renormalization group and to the critical phenomena, L., 1977;
  2. Анисимов М. А., Городецкий E. E., Запрудский В. М., Фазовые переходы с взаимодействующими параметрами порядка, "УФН", 1981, т. 133, с. 103;
  3. Aharony A., Multicritical points, в кн.: Critical phenomena, ed. by P. J. W. Mahne, В., 1983;
  4. Изюмов Ю. А., Сыромятников В. Н., Фазовые переходы и симметрия кристаллов, М., 1984.

Ю. Г. Рудой

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

(время поиска примерно 20 секунд)

Знаете ли Вы, как разрешается парадокс Ольберса?
(Фотометрический парадокс, парадокс Ольберса - это один из парадоксов космологии, заключающийся в том, что во Вселенной, равномерно заполненной звёздами, яркость неба (в том числе ночного) должна быть примерно равна яркости солнечного диска. Это должно иметь место потому, что по любому направлению неба луч зрения рано или поздно упрется в поверхность звезды.
Иными словами парадос Ольберса заключается в том, что если Вселенная бесконечна, то черного неба мы не увидим, так как излучение дальних звезд будет суммироваться с излучением ближних, и небо должно иметь среднюю температуру фотосфер звезд. При поглощении света межзвездным веществом, оно будет разогреваться до температуры звездных фотосфер и излучать также ярко, как звезды. Однако в дело вступает явление "усталости света", открытое Эдвином Хабблом, который показал, что чем дальше от нас расположена галактика, тем больше становится красным свет ее излучения, то есть фотоны как бы "устают", отдают свою энергию межзвездной среде. На очень больших расстояниях галактики видны только в радиодиапазоне, так как их свет вовсе потерял энергию идя через бескрайние просторы Вселенной. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМАФорум Рыцари теории эфира
Рыцари теории эфира
 01.10.2019 - 05:20: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вячеслава Осиевского - Карим_Хайдаров.
30.09.2019 - 12:51: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Дэйвида Дюка - Карим_Хайдаров.
30.09.2019 - 11:53: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Владимира Васильевича Квачкова - Карим_Хайдаров.
29.09.2019 - 19:30: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
29.09.2019 - 09:21: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> КОЛЛАПС МИРОВОЙ ФИНАНСОВОЙ СИСТЕМЫ - Карим_Хайдаров.
29.09.2019 - 07:41: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Михаила Делягина - Карим_Хайдаров.
26.09.2019 - 17:35: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Андрея Пешехонова - Карим_Хайдаров.
26.09.2019 - 16:35: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
26.09.2019 - 08:33: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от О.Н. Четвериковой - Карим_Хайдаров.
26.09.2019 - 06:29: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Ю.Ю. Болдырева - Карим_Хайдаров.
24.09.2019 - 03:34: ТЕОРЕТИЗИРОВАНИЕ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ - Theorizing and Mathematical Design -> ФУТУРОЛОГИЯ - прогнозы на будущее - Карим_Хайдаров.
24.09.2019 - 03:32: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> "Зенит"ы с "Протон"ами будут падать - Карим_Хайдаров.
Bourabai Research Institution home page

Боровское исследовательское учреждение - Bourabai Research Bourabai Research Institution