к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Состояние равновесия динамической системы

Равновесия состояние динамической системы - состояние динамической системы, к-рое не изменяется во времени. Состояние равновесия динамической системы может быть устойчивым, неустойчивым и безразлично-устойчивым. Движение системы вблизи равновесия (при малом от него отклонении) существенно различается в зависимости от характера (типа) состояния равновесия динамической системы. В случае систем с одной степенью свободы, если состояние равновесия динамической системы устойчиво, то при малом возмущении (отклонении) система возвращается к нему, совершая затухающие колебания (на фазовой плоскости такому движению соответствует устойчивый фо-кус - рис. 1, а)или двигаясь апериодически (устойчивый узел - рис. 2, а). Вблизи неустойчивого состояния равновесия динамической системы малые отклонения системы нарастают, при этом система совершает колебания (неустойчивый фокус - рис. 1, б)или движется апериодически (неустойчивый узел - рис. 2, б); вблизи седлового состояния равновесия динамической системы (рис. 3) возможно вначале приближение к состоянию равновесия динамической системы, а затем уход от него. Наконец, в случае безразлично-устойчивого состояния равновесия динамической системы ("центр", рис. 4) малые отклонения приводят к незатухающим колебаниям вблизи состояния равновесия динамической системы. Для систем с неск. степенями свободы движение системы вблизи состояния равновесия динамической системы может быть более сложным и существенно зависит от характера начального отклонения.



Рис. 1. Поведение траекторий в окрестности устойчивого (а) и неустойчивого (б) фокусов; здесь n = 2, 4020-91.jpg=4020-92.jpg; а < 0 (а) и а > 0 (б).


4020-93.jpg


Рис. 2. Траектории в окрестности устойчивого (а) и неустойчивого (б) узлов; l2 < l1 < О (а), 0 < l2 < l1 (6).

4020-94.jpg


Рис. 3. Состояние равновесия типа "седло".

4020-95.jpg

рис. 4. Замкнутые траектории в окрестности точки типа "центр".


4020-96.jpg


Движение динамич. системы вблизи состояния равновесия динамической системы чаще всего описывается линеаризов. ур-ниями, имеющими решение в виде сумм экспонент 4020-97.jpg с комплексными (в общем случае) характеристич. показателями li - корнями характеристич. ур-ния: det(A-lE)=0, где4020-98.jpg а Xi - правая часть дифференц. ур-ний, описывающих исследуемую систему:

4020-99.jpg

х* - решение, отвечающее равновесию, Х(х*)= 0. Если Relk < 0 (Relk > 0), то состояние равновесия динамической системы асимптотически устойчиво (неустойчиво) и через все точки в окрестности х* проходят траектории, стремящиеся к x* при t : , (t : -,),- рис. 1.

Если Relk < 0, k=1,..., т, Relk> 0, j = = т + 1, ..., n, то состояние равновесия динамической системы - "седло"; траектории, стремящиеся к нему при t : , (t : -,), лежат на устойчивом (неустойчивом) многообразии - многомерной сепаратрисе размерности т (п - т) - рис. 5.

Рис. 5. "Седло" в трёхмерном фазовом пространстве; l2 < < l1 < 0, l3 > 0; WS - двумерное устойчивое, WU - одномерное неустойчивое многообразия.



4020-100.jpg

В консервативных (в частности, гамильтоновых) динамич. системах устойчивыми (по Ляпунову) могут быть лишь состояния равновесия динамической системы чисто мнимыми или нулевыми lk, . Например, незатухающие колебания шарика в "потенциальной яме" (рис. 4) описываются движением точки по замкнутой траектории в окрестности состояния равновесия динамической системы типа "центр", для к-рого4020-101.jpg

Если динамич. система зависит от параметра, то (даже и в неконсервативном случае) при его изменении Relk может обратиться в нуль, и тогда состояние равновесия динамической системы может претерпевать бифуркации, связанные с потерей (приобретением) устойчивости или с изменением размерности его сепаратрис (см. также Устойчивость движения).

Литература по

  1. Андронов А. А., Витт А. А., Хайкин С. 9., Теория колебаний, 3 изд., М., 1981;
  2. Баутин Н. Н., Леонтович E. А., Методы и приемы качественного исследования динамических систем на плоскости, М., 1976;
  3. Арнольд В. И,, Дополнительные главы теории обыкновенных дифференциальных уравнений, М., 1978..

В. С. Афраймович, М. И. Рабинович

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

(время поиска примерно 20 секунд)

Знаете ли Вы, почему "черные дыры" - фикция?
Согласно релятивистской мифологии, "чёрная дыра - это область в пространстве-времени, гравитационное притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света (в том числе и кванты самого света). Граница этой области называется горизонтом событий, а её характерный размер - гравитационным радиусом. В простейшем случае сферически симметричной чёрной дыры он равен радиусу Шварцшильда".
На самом деле миф о черных дырах есть порождение мифа о фотоне - пушечном ядре. Этот миф родился еще в античные времена. Математическое развитие он получил в трудах Исаака Ньютона в виде корпускулярной теории света. Корпускуле света приписывалась масса. Из этого следовало, что при высоких ускорениях свободного падения возможен поворот траектории луча света вспять, по параболе, как это происходит с пушечным ядром в гравитационном поле Земли.
Отсюда родились сказки о "радиусе Шварцшильда", "черных дырах Хокинга" и прочих безудержных фантазиях пропагандистов релятивизма.
Впрочем, эти сказки несколько древнее. В 1795 году математик Пьер Симон Лаплас писал:
"Если бы диаметр светящейся звезды с той же плотностью, что и Земля, в 250 раз превосходил бы диаметр Солнца, то вследствие притяжения звезды ни один из испущенных ею лучей не смог бы дойти до нас; следовательно, не исключено, что самые большие из светящихся тел по этой причине являются невидимыми." [цитата по Брагинский В.Б., Полнарёв А. Г. Удивительная гравитация. - М., Наука, 1985]
Однако, как выяснилось в 20-м веке, фотон не обладает массой и не может взаимодействовать с гравитационным полем как весомое вещество. Фотон - это квантованная электромагнитная волна, то есть даже не объект, а процесс. А процессы не могут иметь веса, так как они не являются вещественными объектами. Это всего-лишь движение некоторой среды. (сравните с аналогами: движение воды, движение воздуха, колебания почвы). Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМАФорум Рыцари теории эфира
Рыцари теории эфира
 01.10.2019 - 05:20: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вячеслава Осиевского - Карим_Хайдаров.
30.09.2019 - 12:51: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Дэйвида Дюка - Карим_Хайдаров.
30.09.2019 - 11:53: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Владимира Васильевича Квачкова - Карим_Хайдаров.
29.09.2019 - 19:30: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
29.09.2019 - 09:21: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> КОЛЛАПС МИРОВОЙ ФИНАНСОВОЙ СИСТЕМЫ - Карим_Хайдаров.
29.09.2019 - 07:41: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Михаила Делягина - Карим_Хайдаров.
26.09.2019 - 17:35: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Андрея Пешехонова - Карим_Хайдаров.
26.09.2019 - 16:35: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
26.09.2019 - 08:33: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от О.Н. Четвериковой - Карим_Хайдаров.
26.09.2019 - 06:29: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Ю.Ю. Болдырева - Карим_Хайдаров.
24.09.2019 - 03:34: ТЕОРЕТИЗИРОВАНИЕ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ - Theorizing and Mathematical Design -> ФУТУРОЛОГИЯ - прогнозы на будущее - Карим_Хайдаров.
24.09.2019 - 03:32: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> "Зенит"ы с "Протон"ами будут падать - Карим_Хайдаров.
Bourabai Research Institution home page

Боровское исследовательское учреждение - Bourabai Research Bourabai Research Institution