к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Регистрирующие голографические среды

Регистрирующие голографические среды - светочувствит. материалы, в к-рых записываемое интерференц. поле инициирует возникновение соответственной ему пространственной модуляции по крайней мере одного из параметров: коэф. поглощения a, показателя преломления n или толщины материала d.

Фотоиндуциров. изменение a используется для регистрации амплитудных голограмм, а изменение h и d - для записи фазовых и рельефно-фазовых голограмм. При одноврем. изменении a и ге в регистрирующих голографических средах формируется амплитудно-фазовая голограмма.

В зависимости от соотношения d и периода регистрируемой интерференц. картины Л различают двумерные (d/L4033-1.jpg1) и трёхмерные (d/L4033-2.jpg1) регистрирующие голографические среды. Если при этом d ~ 1 мкм, то регистрирующие голографические среды наз. тонкослойной трёхмерной, а в случае, когда d достигает 1024033-3.jpg103 мкм, - глубокой трёхмерной (см. Голография).

Инициированные световым воздействием изменения параметров регистрирующих голографических сред могут быть обратимыми (реверсивные среды) или носить необратимый характер. Эти изменения могут происходить непосредственно в процессе записи (динамические среды) или в результате дополнит, обработки материала после экспонирования (среды со скрытым изображение м). При постэкснозиц. обработке скрытое изображение многократно усиливается, поэтому регистрирующие голографические среды со скрытым изображением, как правило, обладают значительно более высокой чувствительностью, чем динамические регистрирующие голографические среды.

Динамические регистрирующие голографические среды с изменяющимся при экспонировании показателем преломления n наз. фоторефрактивными. Среди последних различают регистрирующие голографические среды с локальным и нелокальным откликом. В регистрирующих голографических средах с локальным откликом пространственное распределение фотоиндуцированного изменения показателя преломления Дн(г) при записи синусоидальной картины с единичным контрастом (см. Контраст оптический) интерференц. поля синфазно или противофазно распределению интенсивности регистрируемого поля /(г), в регистрирующих голографических средах с нелокальным откликом Ап(г) и 1(г)сдвинуты по фазе. Характерной особенностью трёхмерных фоторефрактивных регистрирующих голографических сред является взаимодействие в объёме среды записываемого излучения с наведённой им фазовой голограммой, к-рое обусловливает энергообмен между интерферирующими пучками и приводит к изменению пространственной структуры голограммы в процессе записи. Эти изменения ограничивают дифракц. эффективность h (см. Динамическая голография, Голо-граммные оптические элементы).

Для неискажённого воспроизведения волнового поля голограммой необходимо, чтобы регистрирующая голографическая среда обеспечивала адекватную запись всех пространственно-частотных компонент регистрируемой на ней интерференц. картины. Поэтому важнейшей характеристикой регистрирующих голографических сред является функция передачи контраста (ФПК), т. е. зависимость амплитуды записанной в регистрирующих голографических средах синусоидальной структуры (решётки) от пространственной частоты этой структуры. Непостоянство ФПК в пределах пространственно-частотного спектра регистрируемой интерференц. картины разл. образом влияет на качество изображения, восстановленного голограммами разл. типа: для Фурье голограмм оно приводит к ограничению поля зрения, для Френеля голограмм - к падению разрешения в восстановленном изображении. При этом разрешающая способность R регистрирующей голографической среды, необходимая для неискажённого воспроизведения волнового поля, определяется макс, пространственной частотой голограммы и может быть вычислена по ф-ле

4033-4.jpg

где h - показатель преломления Р. г. с., 2Q - макс, угол между интерферирующими пучками в среде, l - длина волны излучения в воздухе. При записи голограмм во встречных пучках R достигает 4033-5.jpgмм-1.

Чувствительность Р. г. с. характеризуют либо экспозицией Hопт, при к-рой достигаются макс, значения hмакс, либо величиной4033-6.jpg, обратно пропорциональной экспозиции, приходящейся на 1% h.

Большинство практич. приложений голографии базируется на использовании галогенидо-серебряных .фотогр. материалов, слоях бихромированной желатины

(БХЖ) и фототермопластиках. Краткие сведения об этих материалах и других наиб, распространённых Р. г. с. приведены в табл.

Наиболее распространённые регистрирующие голографические среды

Тип голограмм

Регистрирующие голо-графические среды, используемые для записи голограмм

Параметры регистрирующих голографических сред

нереверсивные

реверсивные

hмакс

(%)

R

(мм-1)

Нопт,

Дж/см2

амплитудные

Фотографические материалы

Фотохромные плёнки

3

~0,5

2,5·103

>3·103

10-5

~10-1

Двумерные

фазовые

Отбелённые фотографические материалы


20

>2,5·103

10-4

рельефно-фазовые

Фоторезисты Аморфные полупроводники

Фототермопластики

70
30


~20

>2·103 >2·103


4·103

~1 6



10-6

Тонкослойные трёхмерные

амплитудно-фазовые

Фотографические материалы


50

>5·103

~10-3

фазовые

БХЖ


99

>5·103

~10-2

Отбелённые фотографические материалы

80

5·103

10-3

Глубокие трёхмерные

амплитудно-фазовые


Фотохромные органические (неорганические) материалы

10

(63)

5·103

0,1:b5

(10-3)

фазовые

Электрооптические кристаллы

80 15

104 ~104

1,6
10-2

Реоксан

Фото полимеры

80

90

~104

2·103

1:2

3

Литература по регистрирующим голографическим средам

  1. Несеребряные и необычные среды для голографии, под ред. В. А. Барачевского, Л., 1978;
  2. Регистрирующие среды для изобразительной голографии и киноголографии, под ред. Г. А. Соболева, Л., 1979;
  3. Новые регистрирующие среды для голографии, под ред. В. А. Барачевского, Л., 1983;
  4. Шварц К. К., Физика оптической записи в диэлектриках и полупроводниках, Рига, 1986;
  5. Свойства светочувствительных материалов и их применение в голографии, под ред. В. А. Барачевского, Л., 1987.

В. И. Суханов

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

(время поиска примерно 20 секунд)

Знаете ли Вы, почему "черные дыры" - фикция?
Согласно релятивистской мифологии, "чёрная дыра - это область в пространстве-времени, гравитационное притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света (в том числе и кванты самого света). Граница этой области называется горизонтом событий, а её характерный размер - гравитационным радиусом. В простейшем случае сферически симметричной чёрной дыры он равен радиусу Шварцшильда".
На самом деле миф о черных дырах есть порождение мифа о фотоне - пушечном ядре. Этот миф родился еще в античные времена. Математическое развитие он получил в трудах Исаака Ньютона в виде корпускулярной теории света. Корпускуле света приписывалась масса. Из этого следовало, что при высоких ускорениях свободного падения возможен поворот траектории луча света вспять, по параболе, как это происходит с пушечным ядром в гравитационном поле Земли.
Отсюда родились сказки о "радиусе Шварцшильда", "черных дырах Хокинга" и прочих безудержных фантазиях пропагандистов релятивизма.
Впрочем, эти сказки несколько древнее. В 1795 году математик Пьер Симон Лаплас писал:
"Если бы диаметр светящейся звезды с той же плотностью, что и Земля, в 250 раз превосходил бы диаметр Солнца, то вследствие притяжения звезды ни один из испущенных ею лучей не смог бы дойти до нас; следовательно, не исключено, что самые большие из светящихся тел по этой причине являются невидимыми." [цитата по Брагинский В.Б., Полнарёв А. Г. Удивительная гравитация. - М., Наука, 1985]
Однако, как выяснилось в 20-м веке, фотон не обладает массой и не может взаимодействовать с гравитационным полем как весомое вещество. Фотон - это квантованная электромагнитная волна, то есть даже не объект, а процесс. А процессы не могут иметь веса, так как они не являются вещественными объектами. Это всего-лишь движение некоторой среды. (сравните с аналогами: движение воды, движение воздуха, колебания почвы). Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМАФорум Рыцари теории эфира
Рыцари теории эфира
 01.10.2019 - 05:20: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вячеслава Осиевского - Карим_Хайдаров.
30.09.2019 - 12:51: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Дэйвида Дюка - Карим_Хайдаров.
30.09.2019 - 11:53: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Владимира Васильевича Квачкова - Карим_Хайдаров.
29.09.2019 - 19:30: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
29.09.2019 - 09:21: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> КОЛЛАПС МИРОВОЙ ФИНАНСОВОЙ СИСТЕМЫ - Карим_Хайдаров.
29.09.2019 - 07:41: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Михаила Делягина - Карим_Хайдаров.
26.09.2019 - 17:35: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Андрея Пешехонова - Карим_Хайдаров.
26.09.2019 - 16:35: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
26.09.2019 - 08:33: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от О.Н. Четвериковой - Карим_Хайдаров.
26.09.2019 - 06:29: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Ю.Ю. Болдырева - Карим_Хайдаров.
24.09.2019 - 03:34: ТЕОРЕТИЗИРОВАНИЕ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ - Theorizing and Mathematical Design -> ФУТУРОЛОГИЯ - прогнозы на будущее - Карим_Хайдаров.
24.09.2019 - 03:32: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> "Зенит"ы с "Протон"ами будут падать - Карим_Хайдаров.
Bourabai Research Institution home page

Боровское исследовательское учреждение - Bourabai Research Bourabai Research Institution