к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Самоорганизация

Самоорганизация - самопроизвольное (не требующее внеш. организующих воздействий) установление в неравновесных диссипативных средах устойчивых регулярных структур (см. Диссипативные структуры ).Первые исследования явления самоорганизации были проведены И. Р. Пригожиным и его коллегами в 1960-е гг.11]. Процесс самопроизвольного формирования регулярных структур называют также процессом формообразования, а соответствующую область науки часто называют синергетикой [3].

Наиб. известный и наглядный пример самоорганизации - возникновение конвективных решёток (сотовой структуры конвекции) с шестигранными ячейками, ячейками Б е н а р а, при подогреве горизонтального слоя жидкости снизу (см. Бифуркация ).При подогреве снизу плоского слоя жидкости развивается т. н. конвектив-ная неустойчивость, связанная с тем, что молекулярный теплоперенос не в состоянии обеспечить температурный баланс между нагретой ниж. поверхностью и охлаждённой верх. поверхностью слоя. Всплывающий в результате действия архимедовой силы нагретый (более лёгкий) элемент жидкости вытесняет холодную жидкость, заставляя её двигаться вниз. В результате в слое устанавливается стационарное вращение элементов жидкости, к-рое при визуализации выглядит как структура упорядоченно вложенных роликов или валов. Ориентация валов в достаточно большом горизонтальном слое произвольна и зависит лишь от случайных нач. условий. Характерный масштаб зависит от толщины слоя и параметров жидкости. В жидкостях, где существенна зависимость параметров от температуры, существующие на нач. этапе развития неустойчивости валы с разл. ориентацией в результате эффекта взаимной синхронизации образуют связанное состояние - решётку с шестигранными ячейками. Возбуждения с любыми др. масштабами (отличными от наблюдаемого) подавляются в результате конкуренции.

Параметры установившихся макроскопич. структур не зависят (в нек-рых пределах) от изменения нач. условий. Они определяются лишь свойствами неравновесной диссипативной среды (поля). В этом смысле такие диссипативные структуры естественно назвать автоструктурами, подобно тому как установившиеся колебания в диссипативной системе с внеш. источником энергии называют автоколебаниями.

Др. пример самоорганизации - самопроизвольное образование спиральных волн в двумерном хим. реакторе, в к-ром протекает автокаталитич. реакция типа реакции Белоусова - Жаботинского (см., напр., [2]).

Теория самоорганизации представляет собой раздел нелинейной динамики неравновесных сред и основывается на сравнительно небольшом числе базовых моделей. Простейший (монотонный) процесс формообразования, установления статич. структур описывается т. н. градиентными моделями. Основная их особенность в том, что существует функционал, называемый функционалом свободной энергии, к-рый в процессе эволюции системы может только убывать, достигая при8015-26.jpg минимума, соответствующего предельному статич. состоянию. В принципе, число таких минимумов, отвечающих структурам разл. типа, велико (мультистабильность); в неогранич. средах их может быть и бесконечное множество. В зависимости от нач. условий реализуется тот или иной статич. аттрактор системы. Так, напр., для ур-ния Свифта - Хоэнберга
8015-27.jpg

где параметр8015-28.jpg характеризует величину квадратичной нелинейности (являющейся, в частности, моделью конвекции Рэлея - Бенара в горизонтальной ячейке больших размеров при небольших надкритичностях: в этом случае8015-29.jpg определяет, напр., степень зависимости вязкости от температуры), имеется неск. аттракторов, среди к-рых большой областью притяжения обладает аттрактор, соответствующий правильной решётке с шестигранными ячейками (абс. минимум функционала свободной энергии). В процессе формирования этой решётки в зависимости от нач. условий наблюдаются «метастабильные» структуры (рис. 1).

8015-30.jpg

8015-31.jpg

Рис. 1. Многообразие путей установления регулярной шестигранной решётки в модели (1): а - разные маршруты формирования устойчивой решётки; б - конечное состояние с минимальным значением свободной энергии.

8015-32.jpg

Рис. 2. Распределение поля для центрально-симметричной локализованной структуры, возникающей из начального беспорядка (в рамках модели (2).

Помимо подобных структур (типа решёток), для процессов самоорганизации характерно также образование локализованных структур (дефекты, дислокации, частицеподобные структуры), к-рые также могут быть описаны в рамках градиентных моделей [5]. Напр., в рамках модели, описываемой ур-нием типа ур-ния (1), но с жёстким возбуждением, существуют частицеподобные локализованные состояния, такие, как на рис. 2.

8015-33.jpg

Рис. 3. Спиральные волны в двумерном химическом реакторе.

Статич. структуры - это лишь одно из проявлений самоорганизации. Во многих экспериментальных ситуациях наблюдается установление: вращающихся структур (напр., спиральные волны - рис. 3); решёток, периодически меняющих свою симметрию [4]; движущихся, сливающихся и вновь рождающихся локализованных структур (напр., дислокаций [5]). Подобным нестатич. структурам обычно отвечают аттракторы в виде предельных циклов или маломерных торов. Среди осн. моделей, описывающих эти процессы, обобщённое ур-ние:
8015-34.jpg

(здесь и - комплексная физ. переменная, зависящая от пространственных координат и времени, а параметры системы вещественны и неотрицательны;8015-35.jpg характеризует зависимость частоты осцилляции от их интенсивности,8015-36.jpg определяет величину диффузии, а8015-37.jpg - дисперсию пространственную). В рамках этого ур-ния удаётся, в частности, описывать процесс самозарождения упорядоченных структур в виде решёток, спиралей из начально неупорядоченного состояния [4]. Этот процесс представляет собой последовательное возникновение элементарных регулярных возбуждений разл. масштабов, результат взаимодействия к-рых между собой и есть суть процесса самоорганизации.

Поскольку системы существенно диссипативны, а образами установившихся движений являются простые аттракторы, то действие шумов или внутр. флуктуации неравновесной среды, как правило, качественно не влияет на процесс самоорганизации (конечно, если эти шумы и флуктуации достаточно малы).

Часто процессы самоорганизации противопоставляются процессу турбулизации неравновесной среды. В действительности между процессами развития регулярных структур и развития турбулентности (пространственно-временного беспорядка) имеется много общего. Прежде всего и для того и для др. процесса наиб. характерно вовлечение в процесс всё новых возбуждений неравновесной среды. Только в первом случае (самоорганизация) эти возбуждения синхронизованы друг с другом, а во втором - наоборот, взаимодействие этих элементарных возбуждений рождает случайность (см. Странный аттрактор ).Естественно, что в широкой области параметров неравновесной среды наблюдаются промежуточные состояния, к-рые нельзя отнести ни к полной самоорганизации, ни к развитой турбулентности. Такие состояния обычно называют пространственно-временным хаосом.

Литература по самоорганизации

  1. Пригожин И., Николис Ж., Биологический порядок, структура и неустойчивости, «УФН», 1973, т. 109, в. 3, с. 517;
  2. Жаботинский А. М., Концентрационные автоколебания, М., 1974;
  3. Xакен Г., Синергетика. Иерархии неустойчивостей в самоорганизующихся системах и устройствах, пер. с англ., М., 1985;
  4. Нелинейные волны. Динамика и эволюция. Сб. науч. трудов, под ред. А. В. Гапонова-Грехова, М. И. Рабиновича, М., 1989;
  5. Рабинович М. И., Сущик М. М., Регулярная и хаотическая динамика структур в течениях жидкости, «УФН», 1990, т. 160, с. 3.

В. С. Афраймович, М. И. Рабинович

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

(время поиска примерно 20 секунд)

Знаете ли Вы, что низкочастотные электромагнитные волны частотой менее 100 КГц коренным образом отличаются от более высоких частот падением скорости электромагнитных волн пропорционально корню квадратному их частоты от 300 тысяч кмилометров в секунду при 100 кГц до примерно 7 тыс км/с при 50 Гц.

НОВОСТИ ФОРУМАФорум Рыцари теории эфира
Рыцари теории эфира
 01.10.2019 - 05:20: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вячеслава Осиевского - Карим_Хайдаров.
30.09.2019 - 12:51: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Дэйвида Дюка - Карим_Хайдаров.
30.09.2019 - 11:53: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Владимира Васильевича Квачкова - Карим_Хайдаров.
29.09.2019 - 19:30: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
29.09.2019 - 09:21: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> КОЛЛАПС МИРОВОЙ ФИНАНСОВОЙ СИСТЕМЫ - Карим_Хайдаров.
29.09.2019 - 07:41: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Михаила Делягина - Карим_Хайдаров.
26.09.2019 - 17:35: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Андрея Пешехонова - Карим_Хайдаров.
26.09.2019 - 16:35: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
26.09.2019 - 08:33: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от О.Н. Четвериковой - Карим_Хайдаров.
26.09.2019 - 06:29: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Ю.Ю. Болдырева - Карим_Хайдаров.
24.09.2019 - 03:34: ТЕОРЕТИЗИРОВАНИЕ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ - Theorizing and Mathematical Design -> ФУТУРОЛОГИЯ - прогнозы на будущее - Карим_Хайдаров.
24.09.2019 - 03:32: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> "Зенит"ы с "Протон"ами будут падать - Карим_Хайдаров.
Bourabai Research Institution home page

Боровское исследовательское учреждение - Bourabai Research Bourabai Research Institution