к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Электронный синхротрон

Электронный синхротрон - кольцевой резонансный ускоритель электронов (позитронов) на энергии от неск. МэВ до десятков ГэВ, в к-ром частота ускоряющего электрич. поля не меняется, ведущее магн. поле увеличивается во времени и равновесная орбита не меняется в процессе ускорит. цикла. Обычно электроны уже при инжекции являются ультрарелятивистскими; если же ускорение начинается с энергии8039-8.jpg МэВ, то в начале ускорит. цикла применяется бетатронный режим ускорения (см. Бетатрон).

Траектории ускоряемых в синхротроне электронов (позитронов) заполняют кольцевую область в вакуумной камере ускорителя. Обращаясь в ней, частицы многократно возвращаются к одним и тем же ускоряющим промежуткам, на к-рые подано переменное напряжение с частотой, в целое число раз q8039-9.jpg превосходящей частоту обращения частиц по т. н. равновесной орбите. Число q наз. кратностью ускорения. При каждом прохождении через промежуток фаза идеальной (равновесной) частицы остаётся неизменной, но фаза реальных частиц немного изменяется, колеблясь около равновесного (синхронного) значения. При ускорении пучок частиц разбивается на сгустки - б а н ч и, заполняющие нек-рую область около синхронных значений фазы. Макс. число сгустков на орбите равно q.

Траектория частиц в С. э. изгибается с помощью дипольных магнитов, создающих ведущее (поворотное) магн. поле. Для фокусировки частиц в совр. С. э. обычно используются поля с большим градиентом магн. индукции (жёсткая, или сильная фокусировка). Изгибающие и фокусирующие функции магн. поля могут совмещаться (магниты с сов мощённым и функциям и) или разделяться (магн. система с разделенными функциями). В последнем случае поворотные магниты (изгибающие траекторию частиц) создают однородные, а фокусирующие (магн. линзы) - квадрупольные поля. Магн. индукция в поворотных магнитах (и её производная в магн. линзах) в течение ускорит. цикла непрерывно возрастает (чаще всего во много раз) в соответствии с ростом импульса ускоряемых частиц.

На криволинейных участках траектории пучки электронов (позитронов) испускают синхротронное излучение ,мгновенная мощность к-рого в расчёте на один электрон определяется ф-лой:
8039-10.jpg

где е - заряд частицы,8039-11.jpg - её лоренц-фактор (отношение полной энергии частицы к её энергии покоя), R(s) - радиус кривизны траектории на участке с координатой s. Мощность, рассеиваемая за оборот, пропорциональна8039-12.jpg . При больших энергиях частиц потери на излучение могут достигать неск. МэВ на оборот. Чтобы уменьшить потери, приходится увеличивать размеры С. э., что сопряжено с увеличением стоимости их строительства. Размеры реальных С. э. (иногда до км) определяются разумным компромиссом между эксплуатационными (гл. обр. стоимость электроэнергии) и капитальными затратами. Потери на излучение приходится всё время компенсировать, поэтому процесс ускорения электронов выгодно вести быстро, за сравнительно небольшое число оборотов (быстроциклические С. э.). Пиковая мощность ускоряющей ВЧ-системы С. э. на энергии в десятки ГэВ может достигать ~1 МВт.

Поскольку синхротронное излучение ускоряемых частиц направлено практически по вектору их скорости (составляет с ним углы8039-13.jpg ), в процессе ускорения происходит радиац. охлаждение пучка (см. Охлаждение пучков заряженных частиц) - уменьшение эмиттанса (фазового объёма) пучка как для поперечных, так и для продольной степени свободы. Аксиальные бета-тронные колебания затухают с декрементом
8039-14.jpg

где8039-15.jpg - полная энергия частицы. Сумма декрементов затухания радиальных бетатронных8039-16.jpg и синхротронных8039-17.jpg колебаний равна8039-18.jpg. Величина каждого из них в отдельности определяется устройством магн. системы ускорителя. В С. э. с азимутально-симметричным полем (слабая фокусировка) величины8039-19.jpg и8039-20.jpgопределяются ф-лами:
8039-21.jpg

из к-рых следует, что для одноврем. затухания этих колебаний показатель спада магн. поля п должен находиться в интервале
8039-22.jpg

В общем случае условие одноврем. затухания колебаний определяется более сложными неравенствами. В жёстко-фокусирующих С. э. с разделёнными функциями условие одноврем. затухания выполняется автоматически.

Радиац. охлаждение позволяет использовать С. э. в качестве накопителей лёгких частиц (электронов, позитронов).

Квантовый характер излучения приводит к стохастич. раскачке колебаний (нагреву пучка), к-рая ограничивает его охлаждение. В установившемся стационарном состоянии радиальный размер пучка обычно определяется связью радиальных бетатронных и синхротронных (радиально-фазовых) колебаний частиц. С ростом энергии он увеличивается8039-23.jpg. Теоретически достижимый аксиальный размер пучка8039-24.jpg крайне мал (8039-25.jpg - комптоновская длина волны электрона). В типичных условиях размер пучка существенно превосходит теоретич. предел из-за связи радиальных и аксиальных бетатронных колебаний, а также вследствие того, что несовершенство магн. системы приводит к появлению зависимости аксиального положения частиц от их энергии - к паразитной аксиальной дисперсионной функции. Как правило, поперечные размеры пучка в начале ускорения не превышают неск. см, а в конце могут уменьшаться до миллиметровых размеров.

В С. э. ср. диапазона энергии (неск. сотен МэВ) с коротким циклом ускорения радиац. эффекты могут не успевать проявляться. В таких ускорителях, как и в синхротронах протонных, уменьшение размеров пучка связано только с адиабатич. затуханием бетатронных и синхротронных колебаний частиц и не может использоваться для создания накопителей.

Ограничения интенсивности (числа частиц в одном цикле ускорения) в совр. С. э. в основном связаны с когерентными микроволновыми неустойчивостями пучка, возникающими вследствие его взаимодействия с металлич. поверхностями, обращёнными к пучку (с неоднородностями вакуумной камеры, соединит. фланцами и сильфонами, с деталями ускоряющих резонаторов, с измерит. электродами и т. д.). Для борьбы с такими неустойчивостями изменяют собств. частоту резонирующих элементов, вводят обратные связи, используют широкополосные демпфирующие системы.

При одноврем. ускорении в С. э. нескольких сгустков появляется ещё один тип неустойчивости - относит. движение сгустков.

Электронные синхротроны в наст. время (90-е гг.) являются осн. типом ускорителей на высокие энергии (начиная с неск. сотен МэВ). Они применяются также в качестве накопителей частиц и источников синхротронного излучения. Конкретные данные по нескольким типичным С. э. приводятся в табл.

Параметры некоторых электронных синхротронов
8039-26.jpg

Литература по электронным синхротронам

  1. Коломенский А. А., Лебедев А. Н., Теория циклических ускорителей, М., 1962;
  2. Брук Г., Циклические ускорители заряженных частиц, пер. с франц., М., 1970;
  3. Коломенский А. А., Физические основы методов ускорения заряженных частиц, М., 1980;
  4. Лебедев А. Н., Шальнов А. В., Основы физики и техники ускорителей, т. 1 - Ускорители заряженных частиц, М., 1981.

Д. В. Пестриков

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

(время поиска примерно 20 секунд)

Знаете ли Вы, как разрешается парадокс Ольберса?
(Фотометрический парадокс, парадокс Ольберса - это один из парадоксов космологии, заключающийся в том, что во Вселенной, равномерно заполненной звёздами, яркость неба (в том числе ночного) должна быть примерно равна яркости солнечного диска. Это должно иметь место потому, что по любому направлению неба луч зрения рано или поздно упрется в поверхность звезды.
Иными словами парадос Ольберса заключается в том, что если Вселенная бесконечна, то черного неба мы не увидим, так как излучение дальних звезд будет суммироваться с излучением ближних, и небо должно иметь среднюю температуру фотосфер звезд. При поглощении света межзвездным веществом, оно будет разогреваться до температуры звездных фотосфер и излучать также ярко, как звезды. Однако в дело вступает явление "усталости света", открытое Эдвином Хабблом, который показал, что чем дальше от нас расположена галактика, тем больше становится красным свет ее излучения, то есть фотоны как бы "устают", отдают свою энергию межзвездной среде. На очень больших расстояниях галактики видны только в радиодиапазоне, так как их свет вовсе потерял энергию идя через бескрайние просторы Вселенной. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМАФорум Рыцари теории эфира
Рыцари теории эфира
 01.10.2019 - 05:20: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вячеслава Осиевского - Карим_Хайдаров.
30.09.2019 - 12:51: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Дэйвида Дюка - Карим_Хайдаров.
30.09.2019 - 11:53: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Владимира Васильевича Квачкова - Карим_Хайдаров.
29.09.2019 - 19:30: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
29.09.2019 - 09:21: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> КОЛЛАПС МИРОВОЙ ФИНАНСОВОЙ СИСТЕМЫ - Карим_Хайдаров.
29.09.2019 - 07:41: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Михаила Делягина - Карим_Хайдаров.
26.09.2019 - 17:35: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Андрея Пешехонова - Карим_Хайдаров.
26.09.2019 - 16:35: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
26.09.2019 - 08:33: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от О.Н. Четвериковой - Карим_Хайдаров.
26.09.2019 - 06:29: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Ю.Ю. Болдырева - Карим_Хайдаров.
24.09.2019 - 03:34: ТЕОРЕТИЗИРОВАНИЕ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ - Theorizing and Mathematical Design -> ФУТУРОЛОГИЯ - прогнозы на будущее - Карим_Хайдаров.
24.09.2019 - 03:32: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> "Зенит"ы с "Протон"ами будут падать - Карим_Хайдаров.
Bourabai Research Institution home page

Боровское исследовательское учреждение - Bourabai Research Bourabai Research Institution