к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Сквид

Сквид [от англ. Superconducting Quantum Interference Device - сверхпроводящее квантовое интерференционное устройство; сверхпроводящий квантовый интерферометр (магнитометр)] - высокочувствит. устройство для преобразования магн. потока в электрич. сигнал пост. или перем. тока, действие к-рого основано на явлении квантования магн. потока в сверхпроводящем кольце с включёнными в него контактами Джозефсона (КД; см. Джозефсона эффект ).В результате интерференции сверхпроводящих токов, при изменении магн. потока Ф через кольцо С. выходной сигнал осциллирует с периодом Ф0, равным кванту магн. потока Ф0 = h/2e = 2,068*10-15 Вб, что связано с фазовой когерентностью сверхпроводящих электронов на макроскопич. расстояниях. Скачок фазы волновой функции сверхпроводящих электронов на КД8040-92.jpg определяется полным магн. потоком через кольцо (8040-93.jpg), а сверхпроводящий ток через КД равен8040-94.jpg =8040-95.jpg, где Iс - критич. ток КД. Пои токе I > Iс на КД появляется напряжение8040-96.jpg

По числу КД в кольце С. и по способу формирования выходного сигнала различают двухконтактные С. пост. тока (ПТ-С.) и одноконтактные С. с ВЧ-накачкой (ВЧ-С.). В ПТ-С. через КД пропускается пост. ток, больший критич. значения Ic, и измеряется пост. напряжение на контакте (Фx), где Фx - измеряемый внеш. магн. поток. В ВЧ-С. высокочастотный ток Iвч в кольце С. возбуждается резонансным контуром, причём отклик С. Vвчх)снимается с этого же контура.

Первым ПТ-С. можно считать устройство, в к-ром Ж. Мерсеро [1] с сотрудниками впервые в 1964 наблюдали квантовую интерференцию сверхпроводящих токов [1]. В 1967 Дж. Циммерман [2] и А. Силвер [2], изучая на перем. токе интерференц. эффекты в сверх-проводящем кольце с точечным КД [2], положили начало ВЧ-С.

Блок-схема ПТ-С. приведена на рис. 1. Если через симметричную конструкцию ПТ-С. (токи через КД равны) пропустить через кольцо С. пост. ток8040-97.jpg , то на параллельно включённых КД возникает пост. напряжение V, осциллирующее при изменении измеряемого внеш. магн. потока Фx, через кольцо С., при этом макс. значения V(Фx)достигаются при Фx = Ф0(n + 1/2), а минимальные - при Фx = пФ0, п - целое число, макс. размах осцилляции V(Ф) наблюдается при оптим. значении параметра LIС0 = 1, где L - индуктивность кольца. Коэф. преобразования для оптимизированных ПТ-С. равен8040-99.jpg где R - сопротивление шунтированных КД. Шунтирование туннельных КД применяется для создания безгистерезисной вольтамперной характеристики контакта. Современные тонкопланочные планарные ПТ-С., изготовленные методами фото- и электронной литографии, имеют коэф. преобразования до 1 мВ/Ф0.
8040-98.jpg

Рис. 1. Схема ПТ-сквида: ИТ - источник постоянного тока; СУ - согласующее устройство; ГМ - генератор модуляции; У - усилитель; СД - синхронный детектор; ФНЧ - фильтр низких частот.

Усиление и регистрация сигнала С. производятся электронными устройствами, находящимися при комнатной температуре. Для ослабления влияния НЧ-шумов вида 1/f (см. Флуктуации электрические)используется модуляц. метод обработки сигнала С.: в отд. катушку модуляции (Lm на рис. 1) вводится перем. ток частотой 100-200 кГц, создающий через кольцо С. поток с амплитудой ~ Ф0/4. Перем. напряжение на С. усиливается, синхронно детектируется и фильтруется. Согласование низкого импеданса С. с высоким импедансом усилителя осуществляется согласующим устройством типа последоват. контура или резонансного трансформатора. Для измерений в большом диапазоне8040-100.jpg используется глубокая отрицат. обратная связь по магн. потоку. Напряжение через сопротивление обратной связи Rос подаётся в катушку модуляции. В результате измеряемый поток компенсируется, а напряжение на резисторе Rос служит выходным сигналом прибора, линейно связанным с измеряемым потоком в диапазоне8040-101.jpg100-1000 Ф0.

Блок-схема типичного ВЧ-С., работающего на фиксиров. частоте радиочастотного диапазона 10-400 МГц, приведена на рис. 2. С кольцом С. связана катушка резонансного колебат. контура LKCK, возбуждаемого генератором тока ВЧ. Резонансный контур согласует низкий импеданс С. с высоким входным сопротивлением усилителя ВЧ. В зависимости от параметра8040-103.jpg различают безгистерезисный (I < 1) и гистерезисный (l > 1) режимы работы ВЧ-С. В первом случае кольцо С. представляет собой параметрич. индуктивность, осциллирующую с изменением внеш. потока Фх. Изменение индуктивности регистрируется по сдвигу резонансной частоты контура LKCK. Безгистерезисный режим работы ВЧ-С. редко используется в практич. устройствах из-за жёстких ограничений на параметры С., стабильность амплитуды и частоты сигнала ВЧ-накачки.
8040-102.jpg

Рис. 2. Схема ВЧ-сквида: ГВЧ - генератор высокой частоты; УВЧ - усилитель высокой частоты; ГНЧ - генератор модуляции низкой частоты; СД - синхронный детектор, ФНЧ - фильтр низких частот.

Если I > 1, воздействие магн. потока накачки с амплитудой, достаточной для возбуждения в кольце с КД тока Iвч > Iс, приводит к характерным гистерезисным потерям энергии в колебат. контуре, уровень к-рых осциллирует в зависимости от внеш. потока Фх с периодом Ф0. Соответствующее изменение добротности контура Q регистрируется по изменению напряжения Vвчx) на нём. Коэф. преобразования магн. потока в напряжение для ВЧ-С. в гистерезисном режиме равен:
8040-104.jpg

где w - частота накачки, k - коэф. связи контура со С. (оптимален k, для к-рого8040-105.jpg ). Для ВЧ-С. типичны значения коэф. преобразования 20-50 мкВ/Ф0.

Для увеличения отношения сигнал/шум и линеаризации коэф. передачи прибора в схемах ВЧ-С. также применяется дополнит. НЧ-модуляция на частотах 10- 50 кГц и отрицательная обратная связь по магн. потоку.

Обычно измеряемый магн. поток через кольцо С. создаётся током Ixво входной или сигнальной катушке с индуктивностью8040-106.jpg мкГн (Фx = MIx, где8040-107.jpg - взаимная индуктивность сигнальной катушки и кольца С., a kc - коэф. связи].

Предельная чувствительность С. разл. типа характеризуется т. н. энергетич. чувствительностью:
8040-108.jpg

выраженной через спектральную плотность мощности эквивалентного шумового потока8040-109.jpg или шумового тока8040-110.jpg. Эта величина имеет размерность действия, поэтому иногда её выражают в единицах8040-111.jpg *10-34 Дж/Гц.

Энергетич. чувствительность типичных ПТ-С. с L ~ 10-11 Гн ограничена тепловым шумом резисторов, шунтирующих КД, и равна 10-30-10-31 Дж/Гц. Для ряда ПТ-С., охлаждённых до Т < 1К, достигнуты рекордные значения8040-112.jpg при измерениях малых переменных Фх ~ 0,01 Ф0 на частотах 100-200 кГц, где не сказывается шум вида 1/f.

Минимальный детектируемый сигнал ВЧ-С. определяется суммарными шумами усилителя ВЧ, контура и самого С. В оптимизиров. конструкциях при частоте накачки 20-30 МГц шумы характеризуются энергетич. чувствительностью8040-113.jpg Дж/Гц. Поскольку коэф. преобразования ВЧ-С. растёт с частотой, а собств. шумы падают, выигрыш в чувствительности можно получить, повышая частоту до СВЧ-диапазона (напр., при f = 10 ГГц получено8040-114.jpg Дж/Гц). Однако это приводит к существ. усложнению конструкции прибора.

В магн. поток, измеряемый С., легко преобразовать многие магн. и электрич. величины: магн. поле и его градиенты, магн. момент, ток, напряжение и др. Обычно это преобразование осуществляется с помощью сверхпроводящего трансформатора магн. потока: сигнальная катушка С. образует замкнутый сверхпроводящий контур с приёмной катушкой, непосредственно воспринимающей изменение магн. потока. В силу сохранения потока в этой цепи экранирующий ток «переносит» часть измеряемого потока в сигнальную катушку, связанную с кольцом С.

Чувствительность сверхпроводящих С--магнитометров достигает8040-115.jpg Тл/Гц1/2 и определяется уже магн. шумом в тщательно экранированных помещениях. По чувствительности С--магнитометры превосходят традиц. магнитометры на 2-3 порядка. С--магнитометры применяются, напр., для измерения магнитных полей биологических объектов [8], магнитометрич. исследований в геофизике и геологии [9], измерения магн. восприимчивости веществ и материалов.

Применение С. для измерений электрич. величин позволяет достичь пороговой чувствительности по току 10-12-10-148040-116.jpg при нулевом сопротивлении сигнальной катушки. По напряжению чувствительность ограничена тепловым шумом низкоомных (10-4-10-8 Ом) источников сигнала и составляет при низких температурах 10-13-10-158040-117.jpg. С--гальванометры и С--вольтметры служат для измерения проводимости и термоэлектрич. эффектов в нормальных и сверхпроводящих металлах. В метрологии С--гальванометры служат в качестве нуль-индикаторов в эталонных установках, к-рые воспроизводят единицу эдс (Вольт) на основе эффекта Джозефсона и единицу сопротивления (Ом) на основе квантового Холла эффекта (см. Квантовая метрология; )шумовой термометр на основе С. используется при установлении шкалы сверхнизких температур [5].

Осн. недостатком С., препятствующим их более широкому распространению, является необходимость охлаждения до уровня гелиевых или водородных температур при применении традиц. сверхпроводящих материалов. Открытие в 1986-87 оксидных высокотемпературных сверхпроводников с Тс8041-1.jpg 100 К открывает перспективы создания С. при азотных температурах [10].

Литература по сквидам

  1. Jakleviс R. С. и др., Quantum interference from a static vector potential in a field-free region, «Phys. Rev. Lett.», 1964, v. 12, Ml 11, p. 274;
  2. Silver A. H., Zimmerman J. E., Quantum states and transitions in weakly connected superconducting rings, «Phys. Rev.», 1967, v. 157, p. 317;
  3. Cолимар Л., Туннельный эффект в сверхпроводниках и его применение, пер. с англ., М., 1974;
  4. Лихарев К. К., Ульрих Б. Т., Системы с джозефсоновскими контактами, М., 1978;
  5. Слабая сверхпроводимость. Квантовые интерферометры и их применения, пер. с англ., М., 1980;
  6. Бароне А., Патерно Д., Эффект Джозефсона: физика и применения, пер. с англ., М., 1984;
  7. Лихарев К. К., Введение в динамику джозефсоновских переходов, М., 1985;
  8. Введенский В.Л., Ожогин В. И., Сверхчувствительная магнитометрия и биомагнетизм, М., 1986;
  9. Одегнал М., Некоторые нестандартные применения сверхпроводящих квантовых интерферометров - сквидов (обзор), «Физика низких температур», 1985, т. 11, с. 5;
  10. Тesсhe С. D., Superconducting magnetometers, «Cryogenics», 1989, v. 29, p. 1135.

И. Я. Краспополип

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

(время поиска примерно 20 секунд)

Знаете ли Вы, в чем ложность понятия "физический вакуум"?

Физический вакуум - понятие релятивистской квантовой физики, под ним там понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. Физическим вакуумом релятивистские теоретики называют полностью лишённое вещества пространство, заполненное неизмеряемым, а значит, лишь воображаемым полем. Такое состояние по мнению релятивистов не является абсолютной пустотой, но пространством, заполненным некими фантомными (виртуальными) частицами. Релятивистская квантовая теория поля утверждает, что, в согласии с принципом неопределённости Гейзенберга, в физическом вакууме постоянно рождаются и исчезают виртуальные, то есть кажущиеся (кому кажущиеся?), частицы: происходят так называемые нулевые колебания полей. Виртуальные частицы физического вакуума, а следовательно, он сам, по определению не имеют системы отсчета, так как в противном случае нарушался бы принцип относительности Эйнштейна, на котором основывается теория относительности (то есть стала бы возможной абсолютная система измерения с отсчетом от частиц физического вакуума, что в свою очередь однозначно опровергло бы принцип относительности, на котором постороена СТО). Таким образом, физический вакуум и его частицы не есть элементы физического мира, но лишь элементы теории относительности, которые существуют не в реальном мире, но лишь в релятивистских формулах, нарушая при этом принцип причинности (возникают и исчезают беспричинно), принцип объективности (виртуальные частицы можно считать в зависимсоти от желания теоретика либо существующими, либо не существующими), принцип фактической измеримости (не наблюдаемы, не имеют своей ИСО).

Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.

Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик Анри Пуанкаре, уже нельзя. Слишком много фактов противоречит этому.

Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.

Однако такая постановка является внутренне противоречивой (виртуальные частицы ненаблюдаемы и их по произволу можно считать в одном случае отсутствующими, а в другом - присутствующими) и противоречащей релятивизму (то есть отрицанию эфира, так как при наличии таких частиц в вакууме релятивизм уже просто невозможен). Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМАФорум Рыцари теории эфира
Рыцари теории эфира
 13.06.2019 - 05:11: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМА ГЛОБАЛЬНОЙ ГИБЕЛИ ПЧЁЛ И ДРУГИХ ОПЫЛИТЕЛЕЙ РАСТЕНИЙ - Карим_Хайдаров.
12.06.2019 - 09:05: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
11.06.2019 - 18:05: ЭКСПЕРИМЕНТАЛЬНАЯ ФИЗИКА - Experimental Physics -> Эксперименты Сёрла и его последователей с магнитами - Карим_Хайдаров.
11.06.2019 - 18:03: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Андрея Маклакова - Карим_Хайдаров.
11.06.2019 - 13:23: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вячеслава Осиевского - Карим_Хайдаров.
11.06.2019 - 13:18: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Светланы Вислобоковой - Карим_Хайдаров.
11.06.2019 - 06:28: АСТРОФИЗИКА - Astrophysics -> К 110 летию Тунгуской катастрофы - Карим_Хайдаров.
10.06.2019 - 21:23: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Владимира Васильевича Квачкова - Карим_Хайдаров.
10.06.2019 - 19:27: СОВЕСТЬ - Conscience -> Высший разум - Карим_Хайдаров.
10.06.2019 - 19:24: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ЗА НАМИ БЛЮДЯТ - Карим_Хайдаров.
10.06.2019 - 19:14: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
10.06.2019 - 08:40: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> КОЛЛАПС МИРОВОЙ ФИНАНСОВОЙ СИСТЕМЫ - Карим_Хайдаров.
Bourabai Research Institution home page

Боровское исследовательское учреждение - Bourabai Research Bourabai Research Institution