к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Скорость звука

Скорость звука - скорость распространения в среде упругой волны. Определяется упругостью и плотностью среды. Для плоской волны, бегущей без изменения формы со скоростью с в направлении оси х, звуковое давление р можно представить в виде р = р(х - - ct), где t - время. Для плоской гармония, волны в среде без дисперсии8042-13.jpg и С. з. выражается через частоту w и волновое число k ф-лой с = w/k. Со скоростью с распространяется фаза гармонич. волны, поэтому с наз. также фазовой С. з. В средах, в к-рых форма произвольной волны меняется при распространении, гармонич. волны тем не менее сохраняют свою форму, но фазовая скорость оказывается различной для разных частот, т. е. имеет место дисперсия звука .В этих случаях пользуются также понятием групповой скорости. При больших амплитудах упругой волны появляются нелинейные эффекты (см. Нелинейная акустика ),приводящие к изменению любых волн, в т. ч. и гармонических: скорость распространения каждой точки профиля волны зависит от величины давления в этой точке, возрастая с ростом давления, что и приводит к искажению формы волны.

Скорость звука в газах и жидкостях. В газах и жидкостях звук распространяется в виде объёмных волн сжатия - разряжения. Если процесс распространения происходит адиабатически (что, как правило, и имеет место), т. е. изменение температуры в звуковой волне не успевает выравниваться и за 1/2, периода тепло из нагретых (сжатых) участков не успевает перейти к холодным (разреженным), то С. з. равна8042-14.jpg , где Р - давление в веществе,8042-15.jpg - его плотность, а индекс s показывает, что производная берётся при постоянной энтропии. Эта С. з. наз. адиабатической. Выражение для С. з. может быть записано также в одной из следующих форм:
8042-16.jpg

где Кад - адиабатич. модуль всестороннего сжатия вещества,8042-17.jpg - адиабатич. сжимаемость,8042-18.jpg - изотермич. сжимаемость,8042-19.jpg =8042-20.jpg - отношение теплоёмкостей при постоянных давлении и объёме.

В идеальном газе8042-21.jpg , где R = = 8,31 Дж/моль*К - универсальная газовая постоянная, Т - абс. темп-pa,8042-22.jpg - молекулярная масса газа. Это т. н. л а п л а с о в а С. з. В газе она совпадает по порядку величины со средней тепловой скоростью движения молекул. Величину8042-23.jpgназывают н ь ю т о н о в о й С. з., она определяет С. з. при изотермич. процессе распространения, к-рый может иметь место на очень низких частотах. В большинстве случаев С. з. соответствует лапласову значению.

С. з. в газах меньше, чем в жидкостях, а в жидкостях, как правило, меньше, чем в твёрдых телах. В табл. 1 и 2 приведены значения С. з. для нек-рых газов и жидкостей, причём в тех случаях, когда имеется дисперсия, приведены значения С. з. для частот, меньших, чем частота релаксации.

В идеальных газах при заданной температуре С. з. не зависит от давления и растёт с ростом температуры как8042-24.jpg . Изменение С. з. равно8042-25.jpg , где8042-26.jpg и8042-27.jpg- малые приращения скорости н температуры по сравнению с их значениями с и Т. При комнатной температуре относит. изменение С. з. в воздухе составляет примерно 0,17% на 1 К. В жидкостях С. з., как правило, уменьшается с ростом температуры и изменение её составляет, напр.. для ацетона -5,5 м/с*К, для этилового спирта -3,6 м/с * К. Исключением из этого правила является вода, в к-рой С. з. при комнатной температуре увеличивается с ростом температуры на 2,5 м/с*К, достигает максимума при температуре ~74°С и с дальнейшим ростом температуры уменьшается. С. з. в воде растёт с увеличением давления примерно на 0,01% на 1 атм, а также с увеличением содержания растворённых в ней солей.

Табл. 1-Скорость звука в некоторых газах при °С*
с, м/с
Азот
334
Кислород
316
Воздух
331
Гелий
965
Водород
1284
Неон
435
Метан
430
Аммиак
415
Углекислый газ
259
Йодистый водород
157

* Значения скорости даны для нормального давления.

Табл. 2-Скорость звука в некоторых жидкостях при 20 °С
с, м/с
Вода
1490
Ацетон
1190
Бензол
1324
Спирт этиловый
1180
Толуол
1324
Четырёххлористый углерод
920
Ртуть
1453
Глицерин
1923

В морской воде С. з. зависит от температуры, солёности и глубины. Эти зависимости имеют сложный вид. Для расчёта С. з. в море используются таблицы, рассчитанные по эмпирия, ф-лам. Поскольку темп-pa, давление, а иногда и солёность меняются с глубиной, то С. з. в океане является функцией глубины c(z). Эта зависимость существенно определяет характер распространения звука в океане (см. Гидроакустика ).В частности, она определяет существование подводного звукового канала, положение оси к-рого и др. характеристики зависят от времени года, времени суток и от география, местоположения.

В сжиженных газах С. з. увеличивается при той же температуре: напр., в газообразном азоте при температуре -195 °С она равна 176 м/с, в жидком азоте при той же температуре 859 м/с, в газообразном и жидком гелии при -269 °С соответственно 102 м/с и 198 м/с.

С. з. в смесях газов или жидкостей зависит от концентрации компонент. В газовых смесях С. з. хорошо описывается ф-лой8042-28.jpg , в к-pой в качестве8042-29.jpg взята молекулярная масса смеси, определяемая молекулярными массами компонентов с учётом их концентрации. В жидких смесях зависимость С. з. от концентрации компонентов имеет довольно сложный характер, к-рый связан с видом межмолекулярных взаимодействий. Так, в спиртоводных и кислотоводных смесях при нек-рой концентрации имеется максимум С.з., а в таких смесях, как ацетон с сероуглеродом, бензол с четырёххлористым углеродом п др., при нек-рой концентрации С. з. имеет минимум. В водных растворах солей С. з. растёт с ростом концентрации во всём интервале концентраций. Т. о., измерение С. з. может использоваться для определения и контроля концентрации компонент смесей и растворов.

В жидком гелии С. з. увеличивается при понижении температуры. При фазовом переходе в сверхтекучее состояние возникает излом на кривой зависимости С. з. от температуры.

В многоатомных газах и практически во всех жидкостях имеется дисперсия С. з., причём в жидкостях она проявляется на высоких УЗ- и гиперзвуковых частотах.

В резинах, полимерах и каучуках С. з. зависит от хим. состава и плотности упаковки макромолекул и растёт с увеличением частоты; в материалах этого типа с меньшей плотностью и С. з. меньше, напр. в силиконовом каучуке С.з. составляет 950-1100 м/с на частотах 20-150 кГц, в бутадиен-нитрильном каучуке 1600-2100 м/с в том же диапазоне частот.

Скорость звука в твёрдых телах. В неограниченной твёрдой среде распространяются продольные и сдвиговые (поперечные) упругие волны. В изотропном твёрдом теле фазовая скорость для продольной волны
8042-30.jpg

для сдвиговой волны
8042-31.jpg

где Е - модуль Юнга, G - модуль сдвига,8042-32.jpg - коэф. Пуассона, К - модуль объёмного сжатия. Скорость распространения продольных волн всегда больше, чем скорость сдвиговых волн, причём обычно выполняется соотношение8042-33.jpg . Значения сl и ct для нек-рых изотропных твёрдых тел приведены в табл. 3.

Табл. 3- Скорость звука в некоторых изотропных твёрдых телах
8042-34.jpg

В монокристаллах С. з. зависит от направления распространения волны в кристалле (см. Кристаллоакустика ).В тех направлениях, в к-рых возможно распространение чисто продольных и чисто поперечных волн, в общем случае имеется одно значение сl и два значения ct. Если значения ct различны, то соответствующие волны иногда наз. быстрой и медленной поперечными волнами. В общем случае для каждого направления распространения волны в кристалле могут существовать три смешанные волны с разными скоростями распространения, к-рые определяются соответствующими комбинациями модулей упругости, причём векторы колебат. смещений частиц в этих трёх волнах взаимно перпендикулярны. В табл. 4 приведены значения С. з. для нек-рых монокристаллов в характерных направлениях.

Во мн. веществах С. з. зависит от наличия посторонних примесей. В полупроводниках и диэлектриках С. з. чувствительна к концентрации примесей; так, при легировании полупроводника примесью, увеличивающей число носителей тока, С. з. уменьшается с увеличением концентрации; при увеличении температуры С. з. слабо увеличивается.

В металлах и сплавах С. з. существенно зависит от предшествующей механической и термообработки: прокат, ковка, отжиг и т. п. Частично это явление связано с дислокациями, наличие к-рых также влияет на С. з.

Табл. 4 - Скорость звука в некоторых монокристаллах
8042-35.jpg

В металлах, как правило, С. з. уменьшается с ростом температуры. При переходе металла в сверхпроводящее состояние характер зависимости иной: величина дс/дТ в точке перехода меняет знак. В сильных магн. полях проявляются нек-рые эффекты в зависимости С. з. от магн. поля, к-рые отражают особенности поведения электронов в монокристалле металла. Так, при распространении звука по нек-рым направлениям в кристалле появляются осцилляции С. з. как функции магн. поля. Измерения зависимости С. з. от магн. поля являются чувствит. методом исследования внутр. структуры металлов.

В пьезоэлектриках и сегнетоэлектриках наличие электромеханич. связи приводит к уменьшению модулей упругости и, следовательно, уменьшает С. з.

Аналогичное явление наблюдается и в магнитострикционных материалах, где наличие магнитоупругой связи приводит, кроме того, к появлению заметной зависимости С. з. от напряжённости магн. поля, обусловленной т. н.8042-36.jpg-эффектом, т. е. зависимостью модуля Юнга Е от величины магн. поля Н. Изменения С. з. с ростом Н могут достигать неск. процентов (иногда до десятков процентов). Такая же зависимость С. з. от напряжённости электрич. поля наблюдается в сегнетоэлектриках. При действии на твёрдое тело статич. моханич. напряжений С. з. зависит от величины этих напряжений, что является следствием отклонения от линейного закона Гука.

В ограниченных твёрдых телах кроме продольных и поперечных волн имеются и др. типы волн. Так, вдоль свободной поверхности твёрдого тела или вдоль границы его с др. средой распространяются поверхностные акустические волны, скорость к-рых меньше скорости объёмных волн, характерных для данного материала. Для пластин, стержней и др. твёрдых акустич. волноводов характерны нормальные волны ,скорость к-рых определяется не только свойствами вещества, но и геометрией тела. Так, напр., С. з. для продольной волны в стержне сст, поперечные размеры к-рого много меньше длины волны звука, отличается от С. з. в неограниченной среде сl (табл. 3):
8042-37.jpg

Методы измерения С.з. можно подразделить на резонансные, интерферометрические, импульсные и оптические (см. Дифракция света на ультразвуке ).Наиб. точности измерения достигают с помощью импульсно-фазовых методов. Оптич. методы дают возможность измерять С. з. на гиперзвуковых частотах (вплоть до 1011-1012 Гц). Точность абс. измерений С. з. на лучшей аппаратуре ок. 10-3 % , тогда как точность относит. измерений порядка 10-5 % (напр., при изучении зависимости с от температуры или магн. поля пли от концентрации примесей или дефектов).

Измерения С. з. используются для определения мн. свойств вещества, таких, как величина отношения теплоёмкостей для газов, сжимаемости газов и жидкостей, модулей упругости твёрдых тел, дебаевской температуры и др. (см. Молекулярная акустика). Определение малых изменений С. з. является чувствит. методом фиксирования примесей в газах и жидкостях. В твёрдых телах измерение С. з. и её зависимости от разл. факторов (температуры, магн. поля и др.) позволяет исследовать строение вещества: зонную структуру полупроводников, строение поверхности Ферми в металлах и пр.

Литература по скорости звука

  1. Бергман Л., Ультразвук и его применение в науке и технике, пер. с нем., 2 изд., М., 1957;
  2. Михайлов И. Г., Соловьев В. А., Сырников Ю. П., Основы молекулярной акустики, М., 1964;
  3. Таблицы для расчета скорости звука в морской воде, Л., 1965;
  4. Физическая акустика, под ред. У. Мэзона, пер. с англ., т. 1, ч. А, М., 1966, гл. 4; т. 4, ч. Б, М., 1970, гл. 7;
  5. Колесников А. Е., Ультразвуковые измерения, 2 изд., М., 1982;
  6. Труэлл Р., Эльбаум Ч., Чик Б., Ультразвуковые методы в физике твердого тела, пер. с англ., М., 1972;
  7. Акустические кристаллы, под ред. М. П. Шаскольской, М., 1982;
  8. Красильни ков В. А., Крылов В. В., Введение в физическую акустику, М., 1984.

А. Л. Полякова

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

(время поиска примерно 20 секунд)

Знаете ли Вы, что, как и всякая идолопоклонническая религия, релятивизм ложен в своей основе. Он противоречит фактам. Среди них такие:

1. Электромагнитная волна (в религиозной терминологии релятивизма - "свет") имеет строго постоянную скорость 300 тыс.км/с, абсурдно не отсчитываемую ни от чего. Реально ЭМ-волны имеют разную скорость в веществе (например, ~200 тыс км/с в стекле и ~3 млн. км/с в поверхностных слоях металлов, разную скорость в эфире (см. статью "Температура эфира и красные смещения"), разную скорость для разных частот (см. статью "О скорости ЭМ-волн")

2. В релятивизме "свет" есть мифическое явление само по себе, а не физическая волна, являющаяся волнением определенной физической среды. Релятивистский "свет" - это волнение ничего в ничем. У него нет среды-носителя колебаний.

3. В релятивизме возможны манипуляции со временем (замедление), поэтому там нарушаются основополагающие для любой науки принцип причинности и принцип строгой логичности. В релятивизме при скорости света время останавливается (поэтому в нем абсурдно говорить о частоте фотона). В релятивизме возможны такие насилия над разумом, как утверждение о взаимном превышении возраста близнецов, движущихся с субсветовой скоростью, и прочие издевательства над логикой, присущие любой религии.

4. В гравитационном релятивизме (ОТО) вопреки наблюдаемым фактам утверждается об угловом отклонении ЭМ-волн в пустом пространстве под действием гравитации. Однако астрономам известно, что свет от затменных двойных звезд не подвержен такому отклонению, а те "подтверждающие теорию Эйнштейна факты", которые якобы наблюдались А. Эддингтоном в 1919 году в отношении Солнца, являются фальсификацией. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМАФорум Рыцари теории эфира
Рыцари теории эфира
 01.10.2019 - 05:20: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вячеслава Осиевского - Карим_Хайдаров.
30.09.2019 - 12:51: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Дэйвида Дюка - Карим_Хайдаров.
30.09.2019 - 11:53: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Владимира Васильевича Квачкова - Карим_Хайдаров.
29.09.2019 - 19:30: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
29.09.2019 - 09:21: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> КОЛЛАПС МИРОВОЙ ФИНАНСОВОЙ СИСТЕМЫ - Карим_Хайдаров.
29.09.2019 - 07:41: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Михаила Делягина - Карим_Хайдаров.
26.09.2019 - 17:35: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Андрея Пешехонова - Карим_Хайдаров.
26.09.2019 - 16:35: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
26.09.2019 - 08:33: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от О.Н. Четвериковой - Карим_Хайдаров.
26.09.2019 - 06:29: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Ю.Ю. Болдырева - Карим_Хайдаров.
24.09.2019 - 03:34: ТЕОРЕТИЗИРОВАНИЕ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ - Theorizing and Mathematical Design -> ФУТУРОЛОГИЯ - прогнозы на будущее - Карим_Хайдаров.
24.09.2019 - 03:32: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> "Зенит"ы с "Протон"ами будут падать - Карим_Хайдаров.
Bourabai Research Institution home page

Боровское исследовательское учреждение - Bourabai Research Bourabai Research Institution