к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Томография

Томография (от греч. tomos - сечение, слой) - метод исследования внутр. структуры разл. объектов (промышленных изделий, минералов, биол. тел и др.), заключающийся в получении послойных изображений объекта при облучении его рентг. лучами, ультразвуком или др. излучениями. Соответственно различают рентгеновскую томографию (радиационную), ультразвуковую, оптическую, магниторезонансную T. и др.

Техника получения изображений отд. слоев пространственных объектов разнообразна. Существуют методы продольного, поперечного, панорамного, симультанного томографирования с разл. вариантами проекц. облучения объектов. Особенно совершенное изображение получают в компьютерной (вычислительной) T.

При томографич. регистрации изображения к--л. слоя объекта источник излучения (напр., рентг. трубка) движется прямолинейно или по кругу в плоскости X0, параллельной регистрируемому слою X1, над объектом. Регистрирующий материал, обычно фотоплёнка, движется позади объекта в плоскости X2, также параллельной плоскости движения источника, по аналогичным (подобным) траекториям, но в обратном направлении. Этим достигается стабилизация положения изображения регистрируемого слоя на фотоматериале, с одновременным размазыванием очертаний др. слоев.

Интересна возможность одноврем. получения изображений мн. параллельных слоев объекта (тела) на ряде фотоплёнок, расположенных одна над другой. Такой метод регистрации наз. с и м у л ь т а н н ы м. Симультанная T. открывает возможность отображать в объёмной регистрирующей среде полное трёхмерное теневое изображение объекта, просвечиваемого рентг. лучами.

Принципиальная схема симультанного томографа показана на рис. 1. Точечный источник излучения S(x, z = 0) находится в плоскости X0(Z = 0). Точка объекта A(x = 0, Z=R)лежит в плоскости X1, удалённой на расстояние R от X0 (z = R), на оси OZ, нормальной к обеим плоскостям X0 и X1. Теневое изображение точки А точка A'(-x, z=H) лежит в плоскости X2(z = H), удалённой на расстояние H от X0 и тоже нормальной к оси OZ.

Для того чтобы при перемещении источника S на величину Dx изображение точки объекта А проецировалось на прежний участок регистрирующей среды, её нужно передвинуть на расстояние Dx в сторону, противоположную направлению движения источника. Обозначив H/R=m, из проекц. соотношений имеем: 5023-26.jpg

Соотношение скоростей движения источника излучения u0 в плоскости X0 и движения регистрирующей среды u2 в плоскости X2 должно быть: u2=-u0(m-1).

Величина m показывает также масштаб регистрируемого изображения A'D' относительно размера объекта AD. Из геом. соотношений, представленных на рис. 1, очевидно, что для точки В справедливы такие же соотношения, как и для точки А, т. е. масштаб томографич. изображения в продольном направлении 5023-28.jpg таков же, как и в поперечном, т. е. получаемое объёмное изображение A'B'C'D' оказывается ортоморфичным объекту ABCD и увеличенным в m раз.


5023-27.jpg

Рис. 1. Принципиальная схема симультан-ной томографической записи.

В качестве объёмной регистрирующей среды можно использовать, напр., многослойный набор фотоплёнок, заключённых в общую кассету и расположенных любым образом. Напр., как показано на рис. 2, слои фотоплёнок 1',2',3' могут быть расположены наклонно к направлению движения кассеты. В этом случае на плёнках будут симуль-танно (одновременно) зарегистрированы изображения, соответствующие косым сечениям объекта 1, 2, 3.

Кинематич. схема осуществления проекц. T. возможна в 3 вариантах. Первый вариант, описанный выше, заключается в том, что просвечиваемый объект стоит неподвижно, а движется источник облучения и в противоположном направлении перемещается регистрирующая среда. Второй вариант может быть осуществлён с неподвижной регистрирующей средой и перемещающимися источниками и объектом. Третий вариант возможно осуществить с неподвижным источником и перемещающимися объектом и регистрирующей средой.

При обработке на ЭВМ, сравнивая оптич. плотности томографич. изображений смежных слоев объекта, можно на изображении регистрируемого слоя в значит. мере ослабить паразитные засветки и тени от структурных элементов др. слоев объекта и выделить слабоконтрастные детали регистрируемого слоя.

Применяя в качестве регистрирующей среды флюорес-центный экран и используя телевизионную систему для ввода изображения в ЭВМ, можно, последовательно перемещая экран по глубине томографич. изображения, непосредственно наблюдать на экране дисплея глубинное строение регистрируемых объектов.

Компьютерная томография основана на том, что при просвечивании рентг. излучением объекта со сложной внутр. структурой информация об этой структуре может быть восстановлена по вычислению пространственного распределения интенсивности излучения, прошедшего через объект. Для получения картины распределения вещества в тонком слое тела просвечивают данное сечение тела пучками параллельно или веерообразно идущих коллими-рованных рентг. лучей, проходящих через исследуемый слой с разных сторон. В каждом из последоват. положений измеряется интенсивность излучения, прошедшего сквозь контролируемый слой, с помощью детекторов, расположенных по периферии контролируемого сечения объекта. Измерения интенсивности излучения подаются в память ЭВМ, где накапливается массив данных, по к-рым затем вычисляются коэф. ослабления излучения или значения плотности материала (вещества) объекта во всех ячейках сетки, образованной пересечениями разнонаправленных лучей в данном слое. По рассчитанным коэф. ослабления излучения на экране дисплея компьютером формируется двумерное полутоновое изображение исследуемого сечения объекта.

5023-29.jpg

Рис. 2. Многослойная регистрация объёмного томографического изображения.


Задача реконструкции изображения состоит в нахождении двумерного распределения линейного коэф. ослабления излучения m(x, y) по известным экспериментально измеренным оценкам набора одномерных проекций (лучевых сумм вдоль прямых линий) p(r, j). Эта задача формально сводится к решению интегрального ур-ния для нормализованной величины линейной проекции вида

5023-30.jpg

где координата каждого отдельного луча в проекции определяется как 5023-31.jpg Здесь I0 и I-интенсивности излучения, к-рые детектор измерил бы в отсутствие объекта и в его присутствии соответственно. На рис. 3 представлена система кооодинат при реконструкции двумерного распределения m(x, y) по известным параллельным проекциям p(r, j) Параллельным рядом прямых показано направление лучей от источника излучения S к детектору Д. Искомое распределение m(x, y) можно восстановить с необходимой точностью, используя известные алгоритмы, к-рые подразделяют на 2 осн. группы: алгебраические и аналитические.

5023-32.jpg

Рис. 3. Система координат при реконструкции плотности томографического изображения m (x,y) по известным параллельным проекциям.



В рамках алгебраич. методов распределение m(x, y) ищут в виде квадратной матрицы из n столбцов и n строк элементарных ячеек с постоянной, в пределах ячейки, рентг. плотностью m. Осн. ур-ние принимает вид:

5023-33.jpg

где aij-весовой коэф., отражающий вклад i-й ячейки в j-ю лучевую сумму; N- общее число ячеек в изображении (для круглого объекта).

Аналитич. методы реконструкции наиболее строги, они базируются на преобразованиях Фурье, обычно их разделяют на 2 группы, отличающиеся процедурой решения: двумерная реконструкция Фурье и обратная проекция с фильтрацией. В последнем случае применимы 3 разновидности фильтрации: Фурье, по Радону и свёрткой.

К достоинствам метода компьютерной T. относится то, что томографич. изображение представляет объективное распределение величины линейного коэф. ослабления излучения по воспроизводимому сечению. Это создаёт предпосылки для автоматизации расшифровки результатов и анализа контролируемых объектов. Получаемое изображение данного сечения не имеет теней или помех от структур, неоднородностей и деталей, содержащихся в др. слоях объекта. Высокая точность измерений и вычислений позволяет при анализе изображений различать вещества и ткани, весьма мало отличающиеся друг от друга по плотности. Совр. средства компьютерной T. обеспечивают пространственное разрешение 0,5-0,2 мм; продольное разрешение соответствует толщине слоя (обычно 5- 10 мм); разрешение по плотности контролируемого вещества (тканей) доведено до 0,1%.

Литература по

  1. Хермен Г., Восстановление изображений по проекциям. Основы реконструктивной томографии, пер. с англ., M., 1983; Вайнберг Э. И., Клюев В. В., Курозаев В. П., Промышленная рентгеновская вычислительная томография, в кн.: Приборы для неразрушающего контроля материалов и изделий. Справочник, под ред. В. В. Клюева, 2 изд., т. 1, M., 1986. H. А. Валюс.

    к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

    (время поиска примерно 20 секунд)


    Знаете ли Вы, что такое мысленный эксперимент, gedanken experiment?
    Это несуществующая практика, потусторонний опыт, воображение того, чего нет на самом деле. Мысленные эксперименты подобны снам наяву. Они рождают чудовищ. В отличие от физического эксперимента, который является опытной проверкой гипотез, "мысленный эксперимент" фокуснически подменяет экспериментальную проверку желаемыми, не проверенными на практике выводами, манипулируя логикообразными построениями, реально нарушающими саму логику путем использования недоказанных посылок в качестве доказанных, то есть путем подмены. Таким образом, основной задачей заявителей "мысленных экспериментов" является обман слушателя или читателя путем замены настоящего физического эксперимента его "куклой" - фиктивными рассуждениями под честное слово без самой физической проверки.
    Заполнение физики воображаемыми, "мысленными экспериментами" привело к возникновению абсурдной сюрреалистической, спутанно-запутанной картины мира. Настоящий исследователь должен отличать такие "фантики" от настоящих ценностей.

    Релятивисты и позитивисты утверждают, что "мысленный эксперимент" весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.

    Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: "Если факт не соответствует теории - измените факт" (В другом варианте " - Факт не соответствует теории? - Тем хуже для факта").

    Максимально, на что может претендовать "мысленный эксперимент" - это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.

    Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.

    Понятие "мысленный эксперимент" придумано специально спекулянтами - релятивистами для шулерской подмены реальной проверки мысли на практике (эксперимента) своим "честным словом". Подробнее читайте в FAQ по эфирной физике.

    НОВОСТИ ФОРУМА

    Форум Рыцари теории эфира


    Рыцари теории эфира
     01.12.2020 - 08:07: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
    01.12.2020 - 08:06: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
    01.12.2020 - 07:43: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> КОЛЛАПС МИРОВОЙ ФИНАНСОВОЙ СИСТЕМЫ - Карим_Хайдаров.
    01.12.2020 - 07:42: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРОБЛЕМЫ КОНСПИРОЛОГИИ - ГЕРМЕТИЗАЦИИ ЗНАНИЙ - Карим_Хайдаров.
    30.11.2020 - 20:21: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
    30.11.2020 - 20:20: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Александра Флоридского - Карим_Хайдаров.
    30.11.2020 - 10:02: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Пламена Паскова - Карим_Хайдаров.
    30.11.2020 - 09:33: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
    29.11.2020 - 18:18: ТЕОРЕТИЗИРОВАНИЕ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ - Theorizing and Mathematical Design -> ФУТУРОЛОГИЯ - прогнозы на будущее - Карим_Хайдаров.
    29.11.2020 - 18:16: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от проф. В.Ю. Катасонова - Карим_Хайдаров.
    29.11.2020 - 11:33: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Галины Царёвой - Карим_Хайдаров.
    29.11.2020 - 09:01: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.

    Боровское исследовательское учреждение - Bourabai Research Bourabai Research Institution