к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Теория упругости

Теория упругости - раздел механики, в к-ром изучаются перемещения, деформации и напряжения, возникающие в покоящихся или движущихся упругих телах под действием нагрузки. У. т.- основа расчётов на прочность, деформируемость и устойчивость в строит, деле, авиа-и ракетостроении, машиностроении, горном деле и др. областях техники и промышленности, а также в физике, сейсмологии, биомеханике и др. науках. Объектами исследования методами У. т. являются разнообразные тела (машины, сооружения, конструкции и их элементы, горные массивы, плотины, геол. структуры, части живого организма и т. п.), находящиеся под действием сил, температурных полей, радиоакт. облучений и др. воздействий. В результате расчётов методами У. т. определяются: допустимые нагрузки, при к-рых в рассчитываемом объекте не возникают напряжения или перемещения, опасные с точки зрения прочности или недопустимые по условиям функционирования; наиб, целесообразные конфигурации и размеры сооружений, конструкций и их деталей; перегрузки, возникающие при динамич. воздействии, напр, при прохождении упругих волн; амплитуды и частоты колебаний конструкций или их частей и возникающие в них динамич. напряжения; усилия, при к-рых рассчитываемый объект теряет устойчивость. Этими расчётами определяются также материалы, наиб. подходящие для изготовления проектируемого объекта, или материалы, к-рыми можно заменить части организма (костные и мышечные ткани, кровеносные сосуды и т. п.). Методы У. т. эффективно используются и для решения нек-рых классов задач пластичности теории (в методе последоват. приближений).

Законы упругости, имеющие место для большинства материалов, по крайней мере, при малых (а иногда и больших) деформациях, отражают взаимно однозначные зависимости между текущими (мгновенными) значениями напряжений и деформаций. Осн. физ. закон У. т.- обобщённый Гука закон, согласно к-рому напряжения линейно зависят от деформаций. Для изотропных материалов эти зависимости имеют вид ,

5045-4.jpg

где 5045-5.jpg -ср. (гидростатич.) деформация, 5045-6.jpg и 5045-7.jpg-постоянные Ламе. Т. о., упругие свойства изотропного материала характеризуются двумя постоянными 5045-8.jpg и 5045-9.jpg или к--н. выраженными через них двумя модулями упругости.

Равенство (1) можно также представить в виде

5045-10.jpg

где5045-11.jpg -ср. (гидростатич.) напряжение, К-модуль объёмной упругости.

Для нелинейного упругого изотропного материала в равенства (2) всюду вместо m входит коэф. 5045-12.jpg , а соотношение 5045-13.jpg заменяется равенством 5045-14.jpg, где величина 5045-15.jpg наз. интенсивностью деформации, а функции Ф и f, универсальные для данного материала, определяются из опытов. Когда 5045-16.jpg достигает нек-рого критич. значения, возникают пластич. деформации.

Матем. задача У. т. при равновесии состоит в том, чтобы, зная действующие внеш. силы (нагрузки) и т. н. граничные условия, определить в любой точке тела значения компонентов тензоров напряжений и деформаций, а также компоненты их, иу, uz вектора перемещения частицы тела, т. е. определить эти 15 величин в виде функций от координат х, у, z точек тела. Исходными для решения этой задачи являются дифференц. ур-ния равновесия:

5045-17.jpg

где р-плотность материала, X, Y, Z-проекции на координатные оси действующей на каждую частицу тела массовой силы (напр., силы тяжести), отнесённой к массе этой частицы. К трём ур-ниям равновесия присоединяются 6 равенств (1) в случае изотропного тела и ещё 6 равенств вида

5045-18.jpg

устанавливающих зависимости между компонентами деформаций и перемещений. Когда на часть S1 граничной поверхности тела действуют заданные поверхностные силы (напр., силы контактного взаимодействия), проекции к-рых, отнесённые к единице площади, равны Fx, Fy, Fz, a для части S2 этой поверхности заданы перемещения её точек5045-19.jpg граничные условия имеют вид '

5045-20.jpg

где l1, l2, lз - косинусы углов между нормалью к поверхности и координатными осями. Первые условия означают, что искомые напряжения должны удовлетворять на границе S1 трём равенствам (5), а вторые - что искомые перемещения должны удовлетворять на границе S2 равенствам (6); в частном случае может быть 5045-21.jpg (часть S2 поверхности жёстко закреплена). Напр., в задаче о равновесии плотины массовая сила-сила тяжести, поверхность S 2 подошвы плотины неподвижна, на остальную поверхность S1 действуют силы напора воды, давления разл. надстроек, транспортных средств и т. д.

В общем случае поставленная задача представляет собой пространственную задачу У. т., решение к-рой трудно осуществимо. Точные аналитические решения имеются лишь для нек-рых частных задач: об изгибе и кручении бруса, о контактном взаимодействии двух тел, о концентрации напряжений, о действии силы на вершину конич. тела и др. Так как ур-ния У. т. являются линейными, то решение задачи о совместном действии двух систем сил получается путём суммирования решений для каждой из систем сил, действующих раздельно (принцип суперпозиции). В частности, если для к--н. тела найдено решение при действии сосредоточенной силы в к--л. произвольной точке тела, то решение задачи при произвольном распределении нагрузок получается путём суммирования (интегрирования). Такие решения получены лишь для небольшого числа тел (неограниченное пространство, полупространство, ограниченное плоскостью, и нек-рые др.). Предложен ряд анали-тич. методов решения пространственной задачи У. т.: ва-риац. методы (Ритца, Бубнова - Талёркина, Кастильяно и др.), метод упругих потенциалов, метод Бетти и др. Интенсивно разрабатываются численные методы (конечно-разностные, метод конечных элементов и др.). Разработка общих методов решений пространственной задачи У. т.- одна из наиб, актуальных проблем У. т.

При решении плоских задач У. т. (когда один из компонентов перемещения равен нулю, а два других зависят только от двух координат) широкое применение находят методы теории функций комплексного переменного. Для стержней, пластин и оболочек, часто используемых в технике, найдены приближённые решения многих практически важных задач на основе нек-рых упрощающих предположений. Применительно к этим объектам интерес представляют задачи об устойчивости равновесия (см. Устойчивость движения).

В задаче термоупругости определяются напряжения и деформации, возникающие вследствие неоднородного распределения температуры в теле. При матем. постановке этой задачи в правую часть первых трёх ур-ний (1) добавляется член 5045-22.jpg где 5045-23.jpg-коэф. линейного температурного расширения, Т(х1 x2 x3)-заданное поле температуры. Аналогичным образом строится теория электромагните-упругости и упругости тел, подвергаемых облучению.

Большой практич. интерес представляют задачи У. т. для неоднородных тел. В этих задачах коэф.5045-24.jpgи5045-25.jpgв ур-ниях (1) являются не константами, а функциями координат, определяющими поле упругих свойств тела, к-рое иногда задают статистически (в виде нек-рых функций распределения). Применительно к этим задачам разрабатываются статис-тич. методы У. т., отражающие статистич. природу свойств поликристаллич. тел и нагрузок.

В динамич. задачах У. т. искомые величины - функции координат и времени. Исходными для матем. решения этих задач являются дифференц. ур-ния движения, отличающиеся от ур-ний (3) тем, что правые части вместо нуля содержат инерц. члены 5045-26.jpg и т. д. К исходным ур-ниям должны также присоединиться ур-ния (1), (4) и, кроме граничных условий (5), (6), ещё задаваться нач. условия, определяющие, напр., распределение перемещений и скоростей частиц тела в нач. момент времени. К этому типу относятся задачи о колебаниях конструкций и сооружений, в к-рых могут определяться формы колебаний и их возможные смены, амплитуды колебаний и их нарастание или убывание во времени, резонансные режимы, динамич. напряжения, методы возбуждения и гашения колебаний и др., а также задачи о распространении упругих волн (сейсмич. волны и их воздействие на конструкции и сооружения; волны, возникающие при взрывах и ударах; термоупругие волны и т. д.).

Одними из совр. проблем У. т. являются матем. постановка задач и разработка методов их решения при конечных (больших) упругих деформациях.

Эксперим, методы У. т. (метод многоточечного тензо-метрирования, поляризационно-оптический метод исследования напряжений, метод муаров и др.) позволяют в нек-рых случаях непосредственно определить распределение напряжений и деформаций в исследуемом объекте или на его поверхности. Эти методы используются также для контроля решений, полученных аналитич. и численным методами, особенно когда решения найдены при к--н. упрощающих допущениях. Иногда эффективными оказываются экспериментально-теоретич. методы, в к-рых частичная информация об искомых функциях получается из опытов.

Литература по теории упругости

  1. Ляв А. Математическая теория упругости, пер. с англ., М.- Л., 1935;
  2. Стретт Дж. В. (лорд Рэлей), Теория звука, пер. с англ., 2 изд., т. 1-2, М., 1955;
  3. Боли Б., Уэйнер Дж., Теория температурных напряжений, пер. с англ., М., 1964;
  4. Трехмерные задачи математической теории упругости и термоупругости, под ред. В. Д. Купрадзе, 2 изд., М., 1976;
  5. Тимошенко С. П., Гудьер Дж., Теория упругости, пер. с англ., 2 изд., М., 1979;
  6. Хан X., Теория упругости. Основы линейной теории и её применение, пер. с нем., М., 1988.

А. А. Ильюшин, В, С. Ленский

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

(время поиска примерно 20 секунд)

Знаете ли Вы, что cогласно релятивистской мифологии "гравитационное линзирование - это физическое явление, связанное с отклонением лучей света в поле тяжести. Гравитационные линзы обясняют образование кратных изображений одного и того же астрономического объекта (квазаров, галактик), когда на луч зрения от источника к наблюдателю попадает другая галактика или скопление галактик (собственно линза). В некоторых изображениях происходит усиление яркости оригинального источника." (Релятивисты приводят примеры искажения изображений галактик в качестве подтверждения ОТО - воздействия гравитации на свет)
При этом они забывают, что поле действия эффекта ОТО - это малые углы вблизи поверхности звезд, где на самом деле этот эффект не наблюдается (затменные двойные). Разница в шкалах явлений реального искажения изображений галактик и мифического отклонения вблизи звезд - 1011 раз. Приведу аналогию. Можно говорить о воздействии поверхностного натяжения на форму капель, но нельзя серьезно говорить о силе поверхностного натяжения, как о причине океанских приливов.
Эфирная физика находит ответ на наблюдаемое явление искажения изображений галактик. Это результат нагрева эфира вблизи галактик, изменения его плотности и, следовательно, изменения скорости света на галактических расстояниях вследствие преломления света в эфире различной плотности. Подтверждением термической природы искажения изображений галактик является прямая связь этого искажения с радиоизлучением пространства, то есть эфира в этом месте, смещение спектра CMB (космическое микроволновое излучение) в данном направлении в высокочастотную область. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМАФорум Рыцари теории эфира
Рыцари теории эфира
 01.10.2019 - 05:20: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вячеслава Осиевского - Карим_Хайдаров.
30.09.2019 - 12:51: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Дэйвида Дюка - Карим_Хайдаров.
30.09.2019 - 11:53: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Владимира Васильевича Квачкова - Карим_Хайдаров.
29.09.2019 - 19:30: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
29.09.2019 - 09:21: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> КОЛЛАПС МИРОВОЙ ФИНАНСОВОЙ СИСТЕМЫ - Карим_Хайдаров.
29.09.2019 - 07:41: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Михаила Делягина - Карим_Хайдаров.
26.09.2019 - 17:35: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Андрея Пешехонова - Карим_Хайдаров.
26.09.2019 - 16:35: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
26.09.2019 - 08:33: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от О.Н. Четвериковой - Карим_Хайдаров.
26.09.2019 - 06:29: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Ю.Ю. Болдырева - Карим_Хайдаров.
24.09.2019 - 03:34: ТЕОРЕТИЗИРОВАНИЕ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ - Theorizing and Mathematical Design -> ФУТУРОЛОГИЯ - прогнозы на будущее - Карим_Хайдаров.
24.09.2019 - 03:32: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> "Зенит"ы с "Протон"ами будут падать - Карим_Хайдаров.
Bourabai Research Institution home page

Боровское исследовательское учреждение - Bourabai Research Bourabai Research Institution