к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Ферримагнетизм

Ферримагнетизм - магнитоупорядоченное состояние вещества, сочетающее свойства ферромагнетизма и антиферромагнетизма; в более общем смысле - совокупность физ. свойств вещества в этом состоянии. Магн. структура в состоянии Ф. определяется взаимной ориентацией векторов намагниченности Мi магнитных подрешё-ток. Самопроизвольная намагниченность М в отсутствие внеш. магн. поля определяется векторной суммой SMi ; в общем случае в состоянии Ф. 5055-79.jpg Вещества, в к-рых при темп-pax ниже Кюри точки ТC устанавливается ферри-магн. упорядочение, называют ферримагнетиками (ФМ) (критич. температуру называют иногда Нееля точкой TN). К ним относятся кристаллич. вещества - ферриты ,интер-металлич. соединения редкоземельных и переходных металлов, аморфные магнетики того же состава. Простейшая модель ферримагн. упорядочения показана на рис. 1.


5055-80.jpg

Рис. 1. Схематическое изображение ферримагнитного упорядочения линейной цепочки магнитных ионов различных сортов с магнитными моментами 5055-81.jpg Ni- число ионов данного сорта в единице объёма; 5055-82.jpg -величины намагниченностей подрешёток; суммарная намагниченность M=M1+M2, 5055-83.jpg .

Термин "Ф." предложен Л. Неелем (L. Neel) в 1948 при изучении магн. свойств широкого класса магн. окислов - ферритов-шпинелей; им же была разработана феноменоло-гич. теория Ф.

Разл. магн. подрешётки, образующие ФМ, содержат ионы одного и того же элемента с разл. валентностью, ионы разл. металлов или одинаковые ионы с разл. кристалло-графич. окружением. Атомные магн. моменты ФМ создаются электронами незаполненных d- или f-электронных оболочек ионов переходных металлов, входящих в состав ФМ. Между магн. ионами существуют обменные взаимодействия (ОВ) (см. Обменное взаимодействие в м а г н ет и з м е), к-рые, наряду с магнитной анизотропией, определяют магнитную атомную структуру ФМ и обычно носят косвенный характер, при к-ром отсутствует прямое перекрытие волновых функций (см. Косвенное обменное взаимодействие, РККИ-обменное взаимодействие). В ферритах наиб. сильным является ОВ между ионами разл. подрешёток, стремящееся установить магн. моменты подрешёток антипараллельно друг другу.

При высоких темп-pax T>>TC когда энергия теплового движения много больше обменной энергии, вещество является парамагнетиком .Температурная зависимость обратной магн. восприимчивости ФМ не подчиняется линейному Кюри-Вейса закону, а носит нелинейный (гиперболический) характер (рис. 2). При высоких температурах T>>TC она близка к зависимости для антиферромагнетика ,а при 5055-87.jpg -для ферромагнетика .При Т= ТC обменная энергия становится равной тепловой и в веществе возникает Ф. В большинстве случаев такой переход является магнитным фазовым переходом 2-го рода и сопровождается характерными аномалиями физ. свойств.

5055-86.jpg

Рис. 2. Температурная зависимость обратной магнитной восприимчивости 5055-84.jpg (1) и асимптоты 5055-85.jpg(2) двухподрешёгочного ферримагнетика, по Неелю: TN - точка Нееля; ТА - асимптотическая точка Кюри.


Магнитная структура ферримагнетиков. Вид магн. упорядочения характеризуется магн. атомной структурой, симметрия к-рой описывается точечными и пространств. группами магнитной симметрии, элементарная магн. ячейка может совпадать с кристаллографической или иметь больший (кратный) период. Наряду с коллинеарными (рис. 1) в ФМ существует большое кол-во сложных неколлинеар-ных и некомпланарных магн. структур. Напр., т р е у г о л ь н ы е структуры (рис. 3) возникают из-за конкуренции внутри- и межподрешёточных ОВ, тогда как з о н т и чн ы е структуры в ферритах-гранатах (рис. 4) возникают благодаря наличию сильной одноионной анизотропии, обусловленной совместным действием спин-орбитального взаимодействия и взаимодействия магн. моментов редкоземельных (РЗМ) ионов с внутрикристаллическим полем.

5055-88.jpg

Рис. 3. Схематическое изображение треугольной магнитной структуры одной из подрешёток.

В аморфных ФМ состава R1-xTx, где R - Gd, Tb, Dy и др. РЗМ-ионы, а Т - Fe, Co, Ni и др. ионы переходных металлов, магн. ионы занимают случайно размещённые в пространстве позиции с разл. кристаллографич. окружением. Обычно магн. моменты d-ионов упорядочиваются (почти) параллельно друг другу благодаря сильному ОВ, а магн. моменты f-ионов (кроме Gd) заполняют нек-рый конус, результирующая намагниченность к-рого ориентирована антипараллельно намагниченности d-ионов (см. Сперимагнетизм). Хотя понятие подрешёток оказывается в данном случае неприменимым, свойства таких магнетиков во многом аналогичны свойствам двухподрешёточ- ных коллинеарных ФМ; имеющиеся отличия обусловлены структурным беспорядком.

5055-89.jpg

Рис. 4. Зонтичная структура магнитных моментов редкоземельных ионов в ферритах-гранатах. Показаны кристаллографические направления, но- мера в скобках обозначают неэквивалентные кристаллографические позиции.


Прямыми методами определения магн. структуры ФМ является дифракция нейтронов (см. Магнитная нейтронография), а также взаимодействие синхротронного излучения с магн. веществом.

Феноменологическая теория ферримагнетизма. Простейшее описание Ф. даёт теория молекулярного поля, обобщённая на произвольное число магн. подрешёток (т е о р и я Н е е л я). Для изотропного ФМ с двумя неэквивалентными подрешётками 1 и 2 суммарную намагниченность (на грамм-ион) можно записать в виде

5055-90.jpg

где M1, M2 - намагниченности подрешёток (на грамм-ион); х1, х2 - относит. концентрации ионов в под-решётках (x1+x2 = 1).

Молекулярные поля, действующие на ионы, равны соответственно

5055-91.jpg

где5055-92.jpg -положительные постоянные, связанные с обменными интегралами внутри- и межподрешёточных ОВ. Закон Кюри - Вейса для намагниченностей подрешёток во внеш. поле Н записывается в виде (С, Т - константа Кюри и темп-pa соответственно)

5056-1.jpg

В области температур, больших Тс, обратная магн. восприимчивость подчиняется закону


5056-2.jpg

(рис, 2), где постоянные c0-1, s, T1 а также парамагн. точка Кюри ТC определяются из решения системы ур-ний (1) - (3). В точке Кюри 5056-3.jpg При TC>0 в области температур Т<ТС возникает Ф., при TC<0 вещество остаётся парамагнитным вплоть до T=0 К. Асимптотика гиперболы определяется ур-нием

5056-4.jpg

Асимптотич. точка Кюри ФМ на рис. 2 TA=-Cc0 Необходимыми условиями возникновения Ф. в рамках теории Нееля являются условия e=-1, ab>1

Ниже ТC температурная зависимость суммарной намагниченности (1) определяется из решения системы самосогласованных ур-ний для намагниченностей подрешёток Мi, определяемых через функции Бриллюэна с эфф. полями (2).

5056-5.jpg

Рис. 5. Основные типы температурной зависимости спонтанной результирующей намагниченности Ms и обратной магнитной восприимчивости c-1(Т)в двухподрешёточных ферримагнетиках.

Различия в температурных зависимостях Мi, обусловленные наличием внутриподрешёточных ОВ, приводят к разл. видам температурной зависимости результирующей намагниченности (рис. 5). На кривых типа V и N существует т о ч к а м а г н и т н о й к о м п е н с а ц и и Tк, по достижении к-рой намагниченности подрешёток точно компенсируются и результирующая намагниченность равна нулю.

Общее феноменологич. описание Ф. даёт теория фазовых переходов, основанная на разложении термодинамического потенциала системы по степеням параметра порядка (в случае Ф.- по компонентам векторов намагниченностей подрешёток Мi). В рамках этой теории удобно также исследовать ориентационные фазовые переходы в ФМ.

Специфическим свойством для Ф. является поведение ФМ в сильных магн. полях, сравнимых по величине с эфф. полем межподрешёточного ОВ. Простейшая коллинеарная магн. структура (рис. 1) в нек-рых интервалах магн. полей и температур может стать неколлинеарной вследствие конкуренции отрицательного ОВ между магн. подрешётками и взаимодействия магн. моментов с внеш. полем Н (С. В. Тябликов, 1957). В малых полях 5056-6.jpg где l-константа ОВ между под-решётками, сохраняется нач. состояние ФМ, в сильных полях5056-7.jpg вещество находится в индуцированной полем ферромагн. фазе5056-8.jpg, а в промежуточных полях 5056-9.jpg возникает неколлине-арная (у г л о в а я) фаза, в к-рой магн. моменты подрешёток составляют разл. углы с направлением поля Н. (Кривая намагничивания изотропного двухподрешёточно-го ФМ изображена на рис. 2 к ст. Ферримагнитный резонанс.)В угловой фазе магн. восприимчивость не зависит от величины поля и равна 1/l Подобное поведение восприимчивости характерно и для антиферромагнетизма.

Наличие вырождения по ориентации магн. моментов относительно внеш. поля в угл. фазе приводит к возможности возникновения доменной структуры в сильных магн. полях (двойникование, тройникование и т. д.); подобные явления наблюдаются также и в сегнетоэлектриках.

Магн. анизотропия существенно изменяет процессы перестройки магн. структуры ФМ и определяет т. н. с п и н-п е р е о р и е н т а ц и о н н ы е ф а з о в ы е п е р е х о-д ы; её влияние особенно важно вблизи точки компенсации Тк. Магн. фазовая диаграмма двухподрешёточного ФМ с магн. анизотропией 2-го порядка при наложении поля вдоль оси лёгкого намагничивания изображена на рис. 6.

5056-10.jpg

Рис. 6. Магнитная фазовая диаграмма двухподрешёточного ферримагнетика (на примере ферритов-гранатов) при учёте магнитной анизотропии 2-го порядка. Магнитное поле приложено вдоль оси лёгкого намагничивания. Схематически показаны магнитные фазы. Сплошные линии - линии фазовых переходов (ФП) 2-го рода, тонкая линия-линия ФП 1-го рода, штрих-пунктирные линии-линии потери устойчивости метастабильных фаз.

(Для случая, когда поле приложено вдоль оси трудного намагничивания, см. рис. 3 к ст. Магнитный фазовый переход.) Вдали от Тк в слабых полях ФМ ведёт себя подобно ферромагнетику, а вблизи Тк - подобно антиферромагнетику, что приводит к возникновению магн. фазового перехода 1-го рода в угл. фазу. Наличие анизотропии более высоких порядков приводит к ещё более сложному характеру переориентации. На рис. 7 показаны магн. фазовые

5056-11.jpg

Рис. 7. Магнитная фазовая диаграмма кубических ферримагнетиков для различных ориентации внешнего поля: а) H || [100] Сплошные линии- линии ФП 2-ю рода; штрих-пунктирная линия -линия ФП 1-го рода между угловыми фазами, О - критическая точка; б) H || [111]

5056-12.jpg

Все линии на диаграмме - линии ФП 1-го рода.

диаграммы ферритов-гранатов при учёте магн. анизотропии 2-го и 4-го порядков с константами K1, K2 в случае K1 <0 для ориентации поля вдоль кристаллич. осей [100] и [111]. В первом случае на диаграмме существует трикритическая точка типа наблюдаемой на диаграмме пар-жидкость, а во втором - все фазовые переходы являются переходами 1-го рода. Свойства ФМ, в к-рых энергия магн. анизотропии порядка энергии межподрешёточного ОВ, значительно отличаются от свойств слабоанизотропных ФМ. Переход в индуцированное полем ферромагн. состояние происходит путём одного или неск. фазовых переходов 1-го рода (рис. 8).

5056-13.jpg

Рис. 8. Кривые намагничивания феррита-граната Y2,75o,25Fe5O12 (сплошные линии); Y3Fe5O12 (пунктир) при T=4,2 К для различных направлений внешнего поля: а) H || [111], б) H || [110], в) H || [100].

Вблизи Тк наблюдается целый ряд аномалий физ. свойств ФМ: значит. рост коэрцитивной силы, температур-ный гистерезис намагниченности, аномалии магнитострик-ции и магнитокалорич. эффекта (рис. 9) и увеличение раз-меров доменов. Константы Верде, Холла и др. подобные характеристики в Тк не обращаются в нуль, а обнаружива-юг достаточно сложную зависимость от температуры и поля что связано с различием соответствующих вкладов, вносимых подрешётками, в силу их разл. кристаллохим. природы.

5056-14.jpg

Рис. 9. Аномалии физических свойств ферримагнетиков вблизи точки магнитной компенсации: а- температурный гистерезис намагниченности sr соединения ErFe2; б-магнитокалорический эффект в феррите-гранате Gd3F5O12; в-продольная магнитострикция феррита-граната Gd3F5O12.

Элементы микроскопической теории ферромагнетизма.

При низких темп-pax классич. теория Ф. становится неприменимой и свойства ФМ описываются квантовой теорией. Для изотропного двухподрешёточного ФМ с подрешётками 1 и 2 гамильтониан может быть записан в виде

5056-15.jpg

где суммирование проводится по всем магн. ионам i и j; 5056-16.jpg -спиновые операторы; символ <...> - означает суммирование по ближайшим соседям; 5056-17.jpg-обменные интегралы. Простейшему приближению на основе гамильтониана (5) в случае низких температур соответствует теория спиновых волн.

В рамках полуклассич. описания спиновым волнам соответствует прецессия магн. моментов mik, ионов, находящихся в узлах кристаллич. решётки ri, с частотой w и волновым вектором k по закону

5056-18.jpg

где mi0-ориентация магн. моментов в осн. состоянии (при Т=0 К). Определение энергии осн. состояния и закона дисперсии (спектра) спиновых волн, т. е. зависимости w(k), позволяет с помощью методов статистич. физики определить термодинамич. и кинетич. свойства ФМ. Зависимость w(k) можно найти из решения линеаризованных ур-ний (см. Ферримагнитный резонанс). Общее число ветвей спиновых волн, т. е. разл. типов колебаний, в неогранич. образце равно числу подрешёток п. Для всех ФМ существует одна низкочастотная (акустич.) ветвь, когда векторы намагниченностей ионов движутся согласованно, сохраняя антипараллельную ориентацию, и (n- 1) высокочастотных (оптических, или обменных) ветвей, где антипараллельная ориентация намагниченностей подрешё-ток нарушается.

В квантовой теории спиновые волны представляют собой одночастичные возбуждения (квазичастицы) над осн. состоянием - магноны. Спиновые операторы могут быть представлены с помощью операторов вторичного квантования (обычно бозе-операторов). В наинизшем (квадратичном) порядке после диагонализации с помощью ка-нонич. преобразования (Тябликов, 1948) гамильтониан принимает вид

5056-19.jpg

где 5056-20.jpg-энергия осн. состояния, включающая в себя энергию нулевых колебаний; 5056-21.jpg -энергия магнона сорта s (соответствующего s-й ветви спектра) с квазиимпульсом k; ns-число магнонов в данном состоянии. Энергия5056-22.jpg определяет в первом приближении собственные частоты нормальных типов связанных колебаний намагниченно-стей подрешёток. В случае изотропного двухподрешёточ-ного ФМ со спинами подрешёгок5056-23.jpg (для простоты 5056-24.jpg

5056-25.jpg

где z - число ближайших соседей; суммирование проводится по первой координац. сфере. Вырождение спектра, характерное для антиферромагн. магнонов (a = 0), отсутствует. В длинноволновом приближении (ka<<1 , где а - постоянная решётки)

5056-26.jpg

Для низкочастотной ветви имеется область, зависящая от a (т. е. по существу от отношения намагниченностей под-решёток), в к-ром ниж. ветвь квадратична по k, как в ферромагнетиках; при дальнейшем росте k она становится линейной, как в антиферромагнетиках.

Взаимодействие электромагнитного излучения с ферри-магнетиками. Взаимодействие эл--магн. излучения с ФМ имеет особенности, характерные для магнитоупорядочен-ных веществ, и явл. одним из наиболее широко применяемых инструментов изучения Ф. Увеличение в 10-103 раз частоты и сигнала ядерного магн. резонанса (ЯМР) связано с увеличением продольной статич. и поперечной ди-намич. составляющих локального поля, действующего на ядерные спины. Измерения частот ЯМР используются для прецизионного определения температурных зависимостей намагниченности подрешёток ФМ. Частоты ЯМР могут различаться не только для разл. ядер, но и для одинаковых ядер с разл. кристаллографич. окружением; методика ЯМР служит одним из косвенных методов определения магн. атомной структуры ФМ.

Ядерный гамма-резонанс (эффект Мёссбауэра) позволяет определить параметры кристаллич. поля, исследовать косвенное обменное взаимодействие. В РЧ-диапазоне наблюдается ферримагн. резонанс.

Многие ФМ являются магнитными диэлектриками или магнитными полупроводниками (напр., ферриты) и прозрачны в видимой области спектра. В нек-рых ферритах-гранатах наблюдаются значит. магнитооптич. эффекты (напр., эффект Фарадея), они также обладают наименьшей диссипацией, при наложении неоднородного статич. поля в них удаётся возбудить бегущие спиновые волны с5056-27.jpg Многие работы по эксперим. изучению движения доменных стенок, вертикальных блоховских линий и цилиндрич. магн. доменов проводятся на образцах ферритов-гранатов. ФМ широко применяются как магнитные материалы (см. также Ферриты).

Литература по

  1. Neel L., Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism, "Ann. de Phys.", 1948, v. 3, p. 137; Тябликов С. В., Методы квантовой теории магнетизма, 2 изд., М., 1975; Вонсовекий С. В., Магнетизм, М., 1971; Ориентационные переходы в редкоземельных магнетиках, М., 1979; Хёрд К. М., Многообразие видов магнитного упорядочения в твердых телах, "УФЫ", 1984, т. 142, с. 331; Редкоземельные ионы в магнито-упорядоченных кристаллах, М., 1985; Динамические и кинетические свойства магнетиков, М., 1986; см. также лит. при ст. Ферримаг-нетик, Ферриты. А. К. Звездин, С. Н. Уточкин.

    к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

    (время поиска примерно 20 секунд)

    Знаете ли Вы, в чем фокус эксперимента Майкельсона?

    Эксперимент А. Майкельсона, Майкельсона - Морли - действительно является цирковым фокусом, загипнотизировавшим физиков на 120 лет.

    Дело в том, что в его постановке и выводах произведена подмена, аналогичная подмене в школьной шуточной задачке на сообразительность, в которой спрашивается:
    - Cколько яблок на березе, если на одной ветке их 5, на другой ветке - 10 и так далее
    При этом внимание учеников намеренно отвлекается от того основополагающего факта, что на березе яблоки не растут, в принципе.

    В эксперименте Майкельсона ставится вопрос о движении эфира относительно покоящегося в лабораторной системе интерферометра. Однако, если мы ищем эфир, как базовую материю, из которой состоит всё вещество интерферометра, лаборатории, да и Земли в целом, то, естественно, эфир тоже будет неподвижен, так как земное вещество есть всего навсего определенным образом структурированный эфир, и никак не может двигаться относительно самого себя.

    Удивительно, что этот цирковой трюк овладел на 120 лет умами физиков на полном серьезе, хотя его прототипы есть в сказках-небылицах всех народов всех времен, включая барона Мюнхаузена, вытащившего себя за волосы из болота, и призванных показать детям возможные жульничества и тем защитить их во взрослой жизни. Подробнее читайте в FAQ по эфирной физике.

    НОВОСТИ ФОРУМАФорум Рыцари теории эфира
    Рыцари теории эфира
     13.06.2019 - 05:11: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМА ГЛОБАЛЬНОЙ ГИБЕЛИ ПЧЁЛ И ДРУГИХ ОПЫЛИТЕЛЕЙ РАСТЕНИЙ - Карим_Хайдаров.
    12.06.2019 - 09:05: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
    11.06.2019 - 18:05: ЭКСПЕРИМЕНТАЛЬНАЯ ФИЗИКА - Experimental Physics -> Эксперименты Сёрла и его последователей с магнитами - Карим_Хайдаров.
    11.06.2019 - 18:03: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Андрея Маклакова - Карим_Хайдаров.
    11.06.2019 - 13:23: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вячеслава Осиевского - Карим_Хайдаров.
    11.06.2019 - 13:18: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Светланы Вислобоковой - Карим_Хайдаров.
    11.06.2019 - 06:28: АСТРОФИЗИКА - Astrophysics -> К 110 летию Тунгуской катастрофы - Карим_Хайдаров.
    10.06.2019 - 21:23: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Владимира Васильевича Квачкова - Карим_Хайдаров.
    10.06.2019 - 19:27: СОВЕСТЬ - Conscience -> Высший разум - Карим_Хайдаров.
    10.06.2019 - 19:24: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ЗА НАМИ БЛЮДЯТ - Карим_Хайдаров.
    10.06.2019 - 19:14: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
    10.06.2019 - 08:40: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> КОЛЛАПС МИРОВОЙ ФИНАНСОВОЙ СИСТЕМЫ - Карим_Хайдаров.
    Bourabai Research Institution home page

    Боровское исследовательское учреждение - Bourabai Research Bourabai Research Institution