к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Электрон

Электрон (е-) - первая из открытых элементарных частиц, носитель отрицат. элементарного заряда е=1,6.10-19 К (4,8.10-10 единиц СГСЭ). Э--самая лёгкая из всех заряж. элементарных частиц. Его масса тe5111-11.jpg9,1•10-28 г в 1836 раз меньше массы протона. Спин Э. равен 1/2 (в единицах 2p/h), и, следовательно, Э. подчиняются Ферми - Дирака статистике. Магнитный момент Э. mе5111-13.jpg е5111-14.jpg/(2mес) = mБ (mБ- магнетон Бора). В пределах точности эксперимента Э.- стабильная частица. Его время жизни t>2•1022 лет.

Э. были открыты в 1897 Дж. Дж. Томсоном (J. J. Thomson), показавшим, что т. н. катодные лучи, возникающие при электрич. разряде в разреженных газах, представляют собой поток отрицательно заряженных частиц. Опытами по отклонению этих частиц в электрич. и магн. полях было установлено, что уд. заряд е/т для них примерно в 1837 раз больше, чем для ионов водорода. За частицами было закреплено назв. "электроны", предложенное ранее в 1891 Дж. Стони (G. Stoney) для обозначения элементарного заряда одновалентных ионов. Значение заряда Э. (близкое к современному) было получено Р. Милликеном (R. Millikan) в серии опытов 1910-14.

Э. играют важнейшую роль в строении окружающего нас вещества, образуя электронные оболочки атомов всех хим. элементов. Типичные размеры электронных оболочек атомов, определяемые квантовой спецификой поведения электронов в поле ядра, задаются в осн. значениями массы и заряда Э. и по порядку величины близки к т. н. боровс-кому радиусу 5111-15.jpg2ее2 = 5•10-9 см.

Характер размещения Э. в атомных оболочках и заполнения ими энергетич. уровней в существ. мере связан с наличием у них спина 1/2 и, следовательно, с действием Паули принципа, запрещающего нахождение двух электронов в одинаковом квантовом состоянии. Это ведёт к периодич. повторению свойств хим. элементов, открытому Д. И. Менделеевым (см. Периодическая система элементов). С наличием спина у Э. связаны, в частности, такие нетривиальные свойства ряда твёрдых тел, как ферромагнетизм, обусловливаемый выстраиванием спинов и связанных с ними магн. моментов у электронов соседних атомов, и сверхпроводимость ,в основе к-рой лежит возможность образования в металлах при низких темп-pax слабо связанных пар Э. с противоположно ориентированными спинами (куперовские пары, см. Купера эффект).

Как элементарная частица Э. принадлежит к классу леп-тонов ,т. е. обладает только эл--магн. и слабым взаимодействием (и, естественно, гравитационным). Описание электромагнитного взаимодействия Э. даётся квантовой электродинамикой (КЭД). В 1929 в рамках КЭД был произведён первый расчёт сечения электродинамич. процесса комптоновского рассеяния у-квантов на Э. (см. Клейна - Нишины форму ла): g + е-5111-16.jpgg' + е-', к-рый дал прекрасное согласие с экспериментом. Важным элементом формализма КЭД явилось вторично-квантованное Дирака уравнение для Э. со спином 1/2. Из него следовало существование частицы с массой, равной массе Э., но с противоположным знаком заряда (античастицы Э.). Такая частица е+ , названная позитроном, была обнаружена в 1932 в составе космич. лучей, что явилось блестящим подтверждением всей схемы КЭД.

За годы, прошедшие после открытия позитрона, аппарат КЭД был усовершенствован введением техники перенормировки, позволившей учитывать в теории более высокие порядки, и предсказания КЭД подверглись сравнению с экспериментом со всё возрастающей точностью. Во всех случаях расхождений обнаружено не было. В частности, с рекордной точностью были рассчитаны и измерены т. н. лэмбовский сдвиг уровней в атоме водорода и магн. момент Э. С учётом высших поправок теории магн. момент Э. me = 1,00116 mБ.

Один из важных выводов, вытекающий из проверок КЭД, связан с размерами Э. КЭД предполагает Э. точечным. Ни в одном эффекте расхождения с этим допущением обнаружено не было. Физически это означает, что размеры Э. меньше 10-16 см. Наилучшая точность проверки была достигнута в чисто электродинамич. процессе е+-5111-17.jpg2g.

Слабое взаимодействие Э. при энергиях, меньших 100 ГэВ в системе центра масс, описывается феноменоло-гич. четырёхфермионной теорией; при энергиях, больших 100 ГэВ в системе центра масс,- теорией электрослабого взаимодействия. Характерные примеры слабого взаимодействия с участием Э.:

5111-18.jpg

При рассмотрении слабого взаимодействия Э. следует приписать дополнительную сохраняющуюся величину - электронное лептонное число .Такое же лептонное число имеет электронное нейтрино vе. В рамках точности совр. эксперимента электронное лептонное число сохраняется. Это означает, что допустим, напр., процесс е-5111-19.jpgn + ve, но невозможен процесс е-5111-20.jpgm-+р или процесс m-5111-21.jpgе- +g. Природа сохранения электронного лептонного числа пока не понята и явится предметом дальнейших исследований. Наиб. вероятно, что указанный закон сохранения не является строгим, но характер и степень его нарушения предстоит ещё выяснить. Возможно, это прольёт новый свет на свойства Э.

А. А. Комар

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, что такое мысленный эксперимент, gedanken experiment?
Это несуществующая практика, потусторонний опыт, воображение того, чего нет на самом деле. Мысленные эксперименты подобны снам наяву. Они рождают чудовищ. В отличие от физического эксперимента, который является опытной проверкой гипотез, "мысленный эксперимент" фокуснически подменяет экспериментальную проверку желаемыми, не проверенными на практике выводами, манипулируя логикообразными построениями, реально нарушающими саму логику путем использования недоказанных посылок в качестве доказанных, то есть путем подмены. Таким образом, основной задачей заявителей "мысленных экспериментов" является обман слушателя или читателя путем замены настоящего физического эксперимента его "куклой" - фиктивными рассуждениями под честное слово без самой физической проверки.
Заполнение физики воображаемыми, "мысленными экспериментами" привело к возникновению абсурдной сюрреалистической, спутанно-запутанной картины мира. Настоящий исследователь должен отличать такие "фантики" от настоящих ценностей.

Релятивисты и позитивисты утверждают, что "мысленный эксперимент" весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.

Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: "Если факт не соответствует теории - измените факт" (В другом варианте " - Факт не соответствует теории? - Тем хуже для факта").

Максимально, на что может претендовать "мысленный эксперимент" - это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.

Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.

Понятие "мысленный эксперимент" придумано специально спекулянтами - релятивистами для шулерской подмены реальной проверки мысли на практике (эксперимента) своим "честным словом". Подробнее читайте в FAQ по эфирной физике.

Bourabai Research Institution home page

Боровское исследовательское учреждение - Bourabai Research Bourabai Research Institution