к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Эшелетт

Эшелетт (от франц. echelette-лесенка, лестница) - оп-тич. элемент, плоская отражат. фазовая дифракционная решётка с треугольной формой штрихов. Используется как диспергирующий элемент в дифракц. спектральных приборах для разложения оптич. излучения в спектр. Э. изготовляется нарезанием на плоской металлич. поверхности (с помощью спец. делительной машины с алмазным резцом) строго параллельных штрихов, необходимая треугольная форма к-рых (рис. 1) определяется формой режущей грани резца. Эшелетт изготовляются также спец. методами, такими, как полимерные копии-реплики с нарезных эшелеттов, покрытые тонким слоем металла. Голографич. методы изготовления дифракц. решёток не позволяют изготовлять Э. со строго треугольной несимметричной формой штрихов, а лишь с приближённой к ней формой и лишь для УФ-, видимой и ближней ИК-областей.

5132-23.jpg

Рис. 1. Схематическое изображение функций JN , Jд и их произведения JдJN=1N2 (заштриховано): направления jm на центр дифракционного максимума функции Jд совпадает с интерференционным максимумом функции JN при т = 2; пэ-нормаль к плоскости эшелетта, пш-нормаль к грани штриха.


Формулы для расчёта спектроскопич. характеристик эшелетта, такие как осн. соотношение - т. н. формула дифракц. решётки d(siny + sinj) = ml, выражения для угл. дисперсии dj/dl, разрешающей силы R = l/dl, области дисперсии Dl =l1/m (d-период решётки, y- угол падения, j- угол дифракции, т - порядок спектра, dl - минимально разрешаемый спектральный интервал длин волн, l1 - коротковолновая граница спектра исследуемого излучения), такие же, как и для амплитудной (напр., щелевой) дифракц. решётки, т. к. они связаны с периодич. структурой решётки и не зависят от формы штриха. Осн. отличие и существ. практич. преимущество Э. перед амплитудной дифракц. решёткой состоит в том, что у Э. при определ. схеме установки один из образуемых им спектров ненулевого порядка (m5132-24.jpg0) может иметь наиб. интенсивность по сравнению с остальными спектрами др. порядков. В этот спектр ненулевого порядка Э. концентрирует большую часть падающего на него потока энергии (до 80%), что позволяет создавать дифракц. спектральные приборы высокой светосилы.

Расчёт результирующего распределения интенсивности в плоскости дисперсии спектр. прибора с Э. (в плоскости, перпендикулярной штрихам Э.), проведённый на основе Гюйгенса - Френеля принципа, показывает, что оно пропорционально произведению двух функций - интерференционной JN и дифракционной Jд: Jрез5132-25.jpgJNJд. Интерференц. функция JN = (sinNq/sinq)2 - результат интерференции когерентных пучков, дифрагированных от всех N штрихов Э. [здесь q = (p/l)d(siny+sinj)]. Она имеет вид эквидистантных резких максимумов разл. порядков т и одинаковой пиковой интенсивности, пропорциональной N2 при 0 = mp, откуда следует: d(siny + sinj)= ml. Дифракц. функция Jд = (sin и/и)2 -результат дифракции на отд. штрихах Э.; здесь u = (p/l)d[(sin y+ sin j) - tgW(cosy + cosj)]. В отличие от JN функция Jд зависит от формы штриха Э.- угла W "скоса" пологой грани несимметричного треугольного штриха (рис. 1). Макс. значение функции Jд=1 при u = 0; по обе стороны от максимума она относительно быстро уменьшается (как при дифракции на щели, см. Дифракция света).

Макс. значение произведения этих функций (JN)mах(Jд)mах = = N21, а следовательно, и макс. интенсивность спектра будет в том случае, если интерференц. максимум функции JN к--л. порядка т5132-26.jpg0 совпадает с центром дифракц. максимума функции Jд. Для этого необходимо, чтобы направление jmах в ур-нии d(siny + sinjmах) = ml, совпало с направлением jд mах на центр максимума функции Jд. функция Jд = (sin и/и)2 при и =0 равна 1, тогда для выполнения указанного условия углы jmах и y, входящие в ур-ние решётки, должны одновременно удовлетворять соотношению

5132-27.jpg

В случае эшелетта это возможно, т. к. положение максимумов функции JN (при заданных y и d)не зависит от формы штриха (угла W) и, изменяя величину W, можно совместить направление на центр функции Jд с любым максимумом функции JN порядка т5132-28.jpg0. В этом и состоит осн. преимущество Э. перед амплитудной решёткой, у к-рой максимум функции Jд совпадает с максимумом функции JN нулевого порядка (т =0), к-рый является ахроматическим, т. е. не образует спектра. На рис. 1 схематически изображены функции JN и Jд и их произведение (штриховка). Здесь дифракц. максимум Jд точно совпадает с интерференц. максимумом 2-го порядка.

Соотношение (1) имеет простой геом. смысл. Если на Э. падает луч (здесь и далее слово "луч" означает параллельный пучок), образующий угол с нормалью пэ к плоскости

Эшелетт, то направление jm на центр функции Jд определяется по закону зеркального отражения от рабочей пологой грани штриха, т. е. углы b и b' (рис. 1), образованные падающим и дифрагированным jmах лучами с нормалью пш к грани штриха, равны: b' = b. Угол jmах, удовлетворяющий условию (1), наз. углом "блеска" (blaze), а длину волны, для к-рой выполняются это условие и условие d(siny + sinjmax) = =mlбл,- длиной волны "блеска" lбл. Область длин волн вблизи lбл наз. областью высокой концентрации энергии в данном порядке спектра, здесь образуется спектр наиб. интенсивности. Однако выполнение условий "блеска" приводит к искажению интенсивности линий регистрируемого спектра. Если, напр., в исследуемом спектре имеется неск. спектральных линий одинаковой интенсивности, то в образовавшемся спектре только одна из них, совпадающая с lбл, будет иметь наиб. интенсивность (рис. 2), а интенсивность остальных линий l1, l2,..., l6 меньше и определяется "огибающей" функцией Jд, что необходимо учитывать при обработке спектров.

5132-29.jpg

Рис. 2. Искажающее действие "огибающей" функции Jд на интенсивность результирующих интерференционных максимумов функции JN в области lбл2 спектра второго порядка.

Для оценки величины относит. искажений интенсивности регистрируемого спектра по сравнению с интенсивностью lбл "огибающую" функцию (sinu/u)2 можно преобразовать (из требования и = 0 и y + j = 2W) к виду

5132-30.jpg

Для отражательного эшелетта это выражение обычно наз. относительным коэф. отражения Э. r(l) по отношению к величине r(lбл1)=1, где lбл1 - длина волны "блеска" в 1-м порядке спектра т = 1. На рис. 3 приведены рассчитанные на ЭВМ графики функции r(l) в зависимости от отношения l/lбл для т=1, 2, 3. Область полуширины функции (sinu/u)2 при и= +p/2, где r(l) = 0,405, наз. осн. областью концентрации излучения или областью энергетич. эффективности Э.: (Dl)эн m = lбл m4m/(4m2- 1) (рис. 3). В пределах этой области длин волн величина r(l) изменяется в интервале 0,405<r(l)< 1, т.е. почти в 2,5 раза. Величина (Dl)эн m зависит от порядка спектра т: максимальна в 1 -м порядке (Dl)эн 1 =(4/3)lбл1 и быстро уменьшается в спектрах 2-го, 3-го и далее порядков. Поэтому Э. наиб. часто используется в условиях образования спектров 1-го порядка. Энергетич. область (Dl)эн 1 1-го порядка спектра больше обычно используемой области дисперсии (Dl)д, т. к. она свободна от переналожения спектров более высоких порядков т = 2, 3, ... Расчёт показывает, что при т= 1 величина r(l) в пределах области дисперсии изменяется в интервале 0,68 < r(l) < 1, т. е. в ~1,5 раза. Такие изменения r(l) возможны, если для данного исследуемого спектра Dl = l2 - l1 параметры Э. (W, d)и схема его установки выбраны так, чтобы выполнялось условие "блеска". Если условие "блеска" не выполняется, интервал изменения r(l) может быть больше, а величины r(l) неодинаковы на краях спектра. Поэтому выбор параметров Э. для проведения исследований в конкретной области спектра является важным. Если область спектра известна Dl = l2 -l1, то величина lбл может быть определена из соотношения lбл = 2l1l2/(l1 + l2); в частности, для октавы [для к-рой l2 = 2l1 и к-рая при т=1 совпадает с областью дисперсии (Dl)д] l = (4/3)l1. При этом lбл5132-32.jpg(l1 + l2)/2. Напр., для октавы видимой области (l1 = 370 нм, l2 = 740 нм) lбл = 493,3 нм; для октавы ИК-области (l = 4-8 мкм) lбл = 5,33 мкм.

5132-31.jpg

Рис. 3. График функции (sinu/u)2 = r(x), x = l/l6л1, в зависимости от отношения l/l6л1; (Dl)д - область дисперсии, (Dl)э- область энергетической эффективности, (Dl)д и (Dl)э уменьшаются с увеличением т.


Постоянная Э. d и соответственно N1 = 1/d шт/мм выбираются из условия d>l2 (l2-длинноволновая граница октавы в мкм). Для видимой области спектра обычно используются Э. с N1 = 1200 шт/мм (d=0,83 мкм = 1,12 l2) и N1 = 600 шт/мм (d= 1,66 мкм = 2,25 l2). Для ИК-области, где спектральный диапазон составляет неск. октав, используется Э. с N1 от 300 до 4 шт/мм.

Зная d и lбл, можно из ур-ний d(siny + sinjm) = mlбл и y + jm = 2W при заданном значении угла падения y найти величину W. Напр., для октавы видимой области с Э. с N1=600 шт/мм при y=10° и т=1 имеем W = 8,6°. Для ИК-области 4-8 мкм N1 = 100 шт/мм, т=1, y=10° имеем W=15,5°.

Если Э. имеет угол W, несколько отличающийся от расчётного при заданном угле падения y, то изменением угла y можно удовлетворить условию точного "блеска" при этом угле W.

При наиб. часто используемой автоколлимац. схеме установки Э. y = j = W и 2dsinyW = mlбл величина W определяется однозначно: для октавы в видимой области спектра lбл = 0,493 мкм, N1 = 600 шт/мм, т=1, W = 8,5°.

Расчёт области концентрации излучения и рабочей области спектра, создаваемого Э., упрощается, если излучение характеризовать не длиной волны l, а волновым числом 5132-33.jpg= 1/l см-1. При этом выражение для коэф. отражения Э. принимает вид

5132-34.jpg

В этом случае функция 5132-35.jpg оказывается симметричной относительно5132-36.jpg (рис. 4) и имеет одинаковый вид для всех порядков спектра, пересекающихся на уровне 5132-37.jpg=0,405. Величина энергетич. эффективности 5132-38.jpg, выраженная в единицах 5132-39.jpg, не зависит от порядка спектра. При этом волновое число, соответствующее условию точного "блеска" 5132-40.jpg равно ср. арифметическому крайних волновых чисел исследуемого спектра: 5132-41.jpg; соответственно 5132-42.jpg. В пределах области дисперсии 5132-43.jpg коэф. отражения 5132-44.jpg изменяется в пределах 0,68 < r(5132-45.jpg) < 1 для всех порядков спектра (рис. 4).

Практически все серийно изготовляемые нарезные диф-ракц. решётки и реплики с них являются Э. с разл. числом N1 и W для разл. областей оптич. спектра - от крайней УФ-области (l= 1 нм) до длинноволновой ИК-области (l=1000 мкм).

Для УФ-области используются Э. с N1 = 3600, 2400, 1800 и 1200 шт/мм с углом W от 30' до 5° для области 1 -100 нм в схеме скользящего падения y = 80-85° и с углом W = 5- 20° для области 100-400 нм; для видимой области используются Э. с Ni = 1200-600 шт/мм с W = 8-20°; для разл. участков ИК-области - Э. с N1 = 300, 200, 100, 50, 12, 6, 4 шт/мм с W = 5-20°.

5132-46.jpg

Рис. 4. График коэффициента отражения r(y) = (sinu/u)2, 5132-47.jpg; 5132-48.jpg - область дисперсии и 5132-49.jpg-область энергетической эффективности, не зависящие от т.

Нарезные металлич. Э. и полимерные металлизир. реплики с них обладают поляризующим действием, т. к. коэф. отражения r(l) оказывается разным для составляющих электрич. вектора падающего излучения, направленных вдоль штрихов и перпендикулярно к ним. Поляризующее действие зависит от длины волны и соотношения d/l, что необходимо учитывать при исследовании спектров поляризованного излучения.

Литература по эшелеттам

  1. Stamm R. F., Whale n J., Energy distribution of diffraction gratings as function of groove form, "JOSA", 1946, v. 36, p. 2;
  2. Герасимов Ф. М., Современные дифракционные решетки, "Оптико-механическая промышленность", 1965, № 11, с. 33;
  3. Тарасов К. И., Спектральные приборы, 2 изд., Л., 1977;
  4. Пейсахсон И. В., Оптика спектральных приборов, 2 изд., Л., 1975;
  5. Малышев В. И., Введение в экспериментальную спектроскопию, М., 1979;
  6. Нагибина И. М., Интерференция и дифракция света, Л., 1985;
  7. Rowland H., Gratings in theory and practice, "Phil. Mag. J. Sci.", 1893, v. 35, p. 397.

В. И. Малышев

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

(время поиска примерно 20 секунд)

Знаете ли Вы, что в 1974 - 1980 годах профессор Стефан Маринов из г. Грац, Австрия, проделал серию экспериментов, в которых показал, что Земля движется по отношению к некоторой космической системе отсчета со скоростью 360±30 км/с, которая явно имеет какой-то абсолютный статус. Естественно, ему не давали нигде выступать и он вынужден был начать выпуск своего научного журнала "Deutsche Physik", где объяснял открытое им явление. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМАФорум Рыцари теории эфира
Рыцари теории эфира
 13.06.2019 - 05:11: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМА ГЛОБАЛЬНОЙ ГИБЕЛИ ПЧЁЛ И ДРУГИХ ОПЫЛИТЕЛЕЙ РАСТЕНИЙ - Карим_Хайдаров.
12.06.2019 - 09:05: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
11.06.2019 - 18:05: ЭКСПЕРИМЕНТАЛЬНАЯ ФИЗИКА - Experimental Physics -> Эксперименты Сёрла и его последователей с магнитами - Карим_Хайдаров.
11.06.2019 - 18:03: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Андрея Маклакова - Карим_Хайдаров.
11.06.2019 - 13:23: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вячеслава Осиевского - Карим_Хайдаров.
11.06.2019 - 13:18: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Светланы Вислобоковой - Карим_Хайдаров.
11.06.2019 - 06:28: АСТРОФИЗИКА - Astrophysics -> К 110 летию Тунгуской катастрофы - Карим_Хайдаров.
10.06.2019 - 21:23: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Владимира Васильевича Квачкова - Карим_Хайдаров.
10.06.2019 - 19:27: СОВЕСТЬ - Conscience -> Высший разум - Карим_Хайдаров.
10.06.2019 - 19:24: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ЗА НАМИ БЛЮДЯТ - Карим_Хайдаров.
10.06.2019 - 19:14: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
10.06.2019 - 08:40: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> КОЛЛАПС МИРОВОЙ ФИНАНСОВОЙ СИСТЕМЫ - Карим_Хайдаров.
Bourabai Research Institution home page

Боровское исследовательское учреждение - Bourabai Research Bourabai Research Institution