к библиотеке   к оглавлению   FAQ по эфирной физике   электротехника и электроника   электрические цепи  

РЕАЛЬНАЯ ФИЗИКА

Конденсаторы электрические

  1. Электрическая емкость
  2. Барьерная емкость
  3. Сдвиг фаз между током и напряжением.
    Понятие двухполюсника
  4. Электроемкость конденсаторов
  5. Емкость в цепи синусоидального тока
  6. Переходные процессы в R-L и R-C цепях
  7. Емкостная связь контуров
  8. Электрическая емкость в электротехнике
  9. Конденсаторы в схемотехнике
  10. Конденсаторы в проектировании Electronics Workbench
  11. Эксперименты.
    Разряд конденсатора на катушку индуктивности

Если двум изолированным друг от друга проводникам сообщить заряды q1 и q2, то между ними возникает некоторая разность потенциалов Δφ, зависящая от величин зарядов и геометрии проводников. Разность потенциалов Δφ между двумя точками в электрическом поле часто называют напряжением и обозначают буквой U.

Наибольший практический интерес представляет случай, когда заряды проводников одинаковы по модулю и противоположны по знаку: q1 = – q2 = q. В этом случае можно ввести понятие электрической емкости. Электроемкостью системы из двух проводников называется физическая величина, определяемая как отношение заряда q одного из проводников к разности потенциалов Δφ между ними:

 Электроемкость. Конденсаторы

В системе СИ единица электроемкости называется фарад (Ф):

 Электроемкость. Конденсаторы

Величина электроемкости зависит от формы и размеров проводников и от свойств диэлектрика, разделяющего проводники. Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства. Такие системы называются конденсаторами, а проводники, составляющие конденсатор, называются обкладками. Простейший конденсатор – система из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика. Такой конденсатор называется плоским. Электрическое поле плоского конденсатора в основном локализовано между пластинами (рис. 1); однако, вблизи краев пластин и в окружающем пространстве также возникает сравнительно слабое электрическое поле, которое называют полем рассеяния. В целом ряде задач можно приближенно пренебрегать полем рассеяния и полагать, что электрическое поле плоского конденсатора целиком сосредоточено между его обкладками (рис. 2). Но в других задачах пренебрежение полем рассеяния может привести к грубым ошибкам, так как при этом нарушается потенциальный характер электрического поля.

Поле плоского конденсатора.
Рисунок 1. Поле плоского конденсатора.
Идеализированное представление поля
Рисунок 2. Идеализированное представление поля плоского конденсатора. Такое поле не обладает свойством потенциальности.

Каждая из заряженных пластин плоского конденсатора создает вблизи поверхности электрическое поле, модуль напряженности которого выражается соотношением

 Электроемкость. Конденсаторы

Согласно принципу суперпозиции, напряженность  Электроемкость. Конденсаторы поля, создаваемого обеими пластинами, равна сумме напряженностей  Электроемкость. Конденсаторы и  Электроемкость. Конденсаторы полей каждой из пластин:

 Электроемкость. Конденсаторы

Внутри конденсатора вектора  Электроемкость. Конденсаторы и  Электроемкость. Конденсаторы параллельны; поэтому модуль напряженности суммарного поля равен

 Электроемкость. Конденсаторы

Вне пластин вектора  Электроемкость. Конденсаторы и  Электроемкость. Конденсаторы направлены в разные стороны, и поэтому E = 0. Поверхностная плотность σ заряда пластин равна q / S, где q – заряд, а S – площадь каждой пластины. Разность потенциалов Δφ между пластинами в однородном электрическом поле равна Ed, где d – расстояние между пластинами. Из этих соотношений можно получить формулу для электроемкости плоского конденсатора:

 Электроемкость. Конденсаторы

Таким образом, электроемкость плоского конденсатора прямо пропорциональна площади пластин (обкладок) и обратно пропорциональна расстоянию между ними. Если пространство между обкладками заполнено диэлектриком, электроемкость конденсатора увеличивается в ε раз:

 Электроемкость. Конденсаторы

Примерами конденсаторов с другой конфигурацией обкладок могут служить сферический и цилиндрический конденсаторы. Сферический конденсатор – это система из двух концентрических проводящих сфер радиусов R1 и R2. Цилиндрический конденсатор – система из двух соосных проводящих цилиндров радиусов R1 и R2 и длины L. Емкости этих конденсаторов, заполненных диэлектриком с диэлектрической проницаемостью ε, выражаются формулами:

 Электроемкость. Конденсаторы
 Электроемкость. Конденсаторы

Конденсаторы могут соединяться между собой, образуя батареи конденсаторов. При параллельном соединении конденсаторов (рис. 3) напряжения на конденсаторах одинаковы: U1 = U2 = U, а заряды равны q1 = С1U и q2 = С2U. Такую систему можно рассматривать как единый конденсатор электроемкости C, заряженный зарядом q = q1 + q2 при напряжении между обкладками равном U. Отсюда следует

 Электроемкость. Конденсаторы

Таким образом, при параллельном соединении электроемкости складываются.

Параллельное соединение
Рисунок 3. Параллельное соединение конденсаторов. C = C1 + C2.
Последовательное соединение
Рисунок 4. Последовательное соединение конденсаторов.  Электроемкость. Конденсаторы

При последовательном соединении (рис. 4) одинаковыми оказываются заряды обоих конденсаторов: q1 = q2 = q, а напряжения на них равны  Электроемкость. Конденсаторы и  Электроемкость. Конденсаторы Такую систему можно рассматривать как единый конденсатор, заряженный зарядом q при напряжении между обкладками U = U1 + U2. Следовательно,

 Электроемкость. Конденсаторы

При последовательном соединении конденсаторов складываются обратные величины емкостей. Формулы для параллельного и последовательного соединения остаются справедливыми при любом числе конденсаторов, соединенных в батарею.

к библиотеке   к оглавлению   FAQ по эфирной физике   электротехника и электроника   электрические цепи  

(время поиска примерно 20 секунд)

Знаете ли Вы, что любой разумный человек скажет, что не может быть улыбки без кота и дыма без огня, что-то там, в космосе, должно быть, теплое, излучающее ЭМ-волны, соответствующее температуре 2.7ºК. Действительно, наблюдаемое космическое микроволновое излучение (CMB) есть тепловое излучение частиц эфира, имеющих температуру 2.7ºK. Еще в начале ХХ века великие химики и физики Д. И. Менделеев и Вальтер Нернст предсказали, что такое излучение (температура) должно обнаруживаться в космосе. В 1933 году проф. Эрих Регенер из Штуттгарта с помощью стратосферных зондов измерил эту температуру. Его измерения дали 2.8ºK - практически точное современное значение. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМАФорум Рыцари теории эфира
Рыцари теории эфира
 13.06.2019 - 05:11: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМА ГЛОБАЛЬНОЙ ГИБЕЛИ ПЧЁЛ И ДРУГИХ ОПЫЛИТЕЛЕЙ РАСТЕНИЙ - Карим_Хайдаров.
12.06.2019 - 09:05: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
11.06.2019 - 18:05: ЭКСПЕРИМЕНТАЛЬНАЯ ФИЗИКА - Experimental Physics -> Эксперименты Сёрла и его последователей с магнитами - Карим_Хайдаров.
11.06.2019 - 18:03: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Андрея Маклакова - Карим_Хайдаров.
11.06.2019 - 13:23: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вячеслава Осиевского - Карим_Хайдаров.
11.06.2019 - 13:18: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Светланы Вислобоковой - Карим_Хайдаров.
11.06.2019 - 06:28: АСТРОФИЗИКА - Astrophysics -> К 110 летию Тунгуской катастрофы - Карим_Хайдаров.
10.06.2019 - 21:23: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Владимира Васильевича Квачкова - Карим_Хайдаров.
10.06.2019 - 19:27: СОВЕСТЬ - Conscience -> Высший разум - Карим_Хайдаров.
10.06.2019 - 19:24: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ЗА НАМИ БЛЮДЯТ - Карим_Хайдаров.
10.06.2019 - 19:14: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
10.06.2019 - 08:40: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> КОЛЛАПС МИРОВОЙ ФИНАНСОВОЙ СИСТЕМЫ - Карим_Хайдаров.
Bourabai Research Institution home page

Боровское исследовательское учреждение - Bourabai Research Bourabai Research Institution