к оглавлению

Основные свойства энтропии

1. Энтропия является величиной вещественной и неотрицательной, т.к. значения вероятностей pn находятся в интервале 0-1, значения log pn всегда отрицательны, а значения -pn log pn в (1.4.2) соответственно положительны.

2. Энтропия - величина ограниченная, т.к. при pn Ю 0 значение -pnЧ log pn также стремится к нулю, а при 0 < pn Ј 1 ограниченность суммы всех слагаемых очевидна.

3. Энтропия равна 0, если вероятность одного из состояний источника информации равна 1, и тем самым состояние источника полностью определено (вероятности остальных состояний источника равны нулю, т.к. сумма вероятностей должна быть равна 1).

4. Энтропия максимальна при равной вероятности всех состояний источника информации:

Hmax(U) = -(1/N) log(1/N) = log N.

5. Энтропия источника с двумя состояниями u1 и u2 при изменении соотношения их вероятностей p(u1)=p и p(u2)=1-p определяется выражением:

H(U) = -[p log p + (1-p) log(1-p)],

и изменяется от 0 до 1, достигая максимума при равенстве вероятностей. График изменения энтропии приведен на рис. 1.4.1.

6. Энтропия объединенных статистически независимых источников информации равна сумме их энтропий.

Рассмотрим это свойство на двух источниках информации u и v. При объединении источников получаем обобщенный источник информации (u,v), который описывается вероятностями p(unvm) всех возможных комбинаций состояний un источника u и vm источника v. Энтропия объединенного источника при N возможных состояниях источника u и М возможных состояниях источника v:

H(UV) = -p(unvm) log p(unvm),

Источники статистически независимы друг от друга, если выполняется условие:

p(unvm) = p(un)Ч p(vm).

С использованием этого условия соответственно имеем:

H(UV) = -p(un)p(vm) log [p(un)p(vm)] =

= -p(un) log p(un)p(vm) -p(vm) log p(vm)p(um).

С учетом того, что p(un) = 1 иp(vm) = 1, получаем:

H(UV) = H(U) + H(V). (1.4.3)

7. Энтропия характеризует среднюю неопределенность выбора одного состояния из ансамбля, полностью игнорируя содержательную сторону ансамбля. С одной стороны, это расширяет возможности использования энтропии при анализе самых различных явлений, но, с другой стороны, требует определенной дополнительной оценки возникающих ситуаций. Как это следует из рис. 1.4.1, энтропия состояний может быть неоднозначной, и если в каком-либо экономическом начинании действие u с вероятностью pu=p приводит к успеху, а действие v с вероятностью pv=1-p к банкротству, то выбор действий по оценке энтропии может оказаться и прямо противоположным, т.к. энтропия при pv=p равна энтропии при pu=p.

к оглавлению


Знаете ли Вы, что такое "усталость света"?
Усталость света, анг. tired light - это явление потери энергии квантом электромагнитного излучения при прохождении космических расстояний, то же самое, что эффект красного смещения спектра далеких галактик, обнаруженный Эдвином Хабблом в 1926 г.
На самом деле кванты света, проходя миллиарды световых лет, отдают свою энергию эфиру, "пустому пространству", так как он является реальной физической средой - носителем электромагнитных колебаний с ненулевой вязкостью или трением, и, следовательно, колебания в этой среде должны затухать с расходом энергии на трение. Трение это чрезвычайно мало, а потому эффект "старения света" или "красное смещение Хаббла" обнаруживается лишь на межгалактических расстояниях.
Таким образом, свет далеких звезд не суммируется со светом ближних. Далекие звезды становятся красными, а совсем далекие уходят в радиодиапазон и перестают быть видимыми вообще. Это реально наблюдаемое явление астрономии глубокого космоса. Подробнее читайте в FAQ по эфирной физике.

Bourabai Research Institution home page

Боровское исследовательское учреждение - Bourabai Research Bourabai Research Institution