Реальная физика   ТОЭЭ   ТЭЦ   РЭКТ   ТПОИ   ЭИ  

Теория автоматического управления

Частотные критерии устойчивости

Это графоаналитические методы, позволяющие по виду частотных характеристик САУ судить об их устойчивости. Их общее достоинство в простой геометрической интерпретации, наглядности и в отсутствии ограничений на порядок дифференциального уравнения.

 

1. Принцип аргумента

Запишем характеристический полином САУ в виде

 

D(p) = a0(p - p1)(p - p2)...(p - pn) = 0.

 

 

 

 

Его корни

 

pi = i + ji = |pi|ejarg(pi),

 

где arg(pi) = arctg(i/ai) + k,

.

 

Каждый корень можно изобразить вектором на комплексной плоскости (рис.68а), тогда разность p - pi изобразится разностью векторов (рис.68б), где p - любое число.

Еcли менять значение p произвольным образом, то конец вектора p - pi будет перемещаться по комплексно плоскости, а его начало будет оставаться неподвижным, так как pi - это конкретное неизменное значение.

В частном случае, если на вход системы подавать гармонические колебания с различной частотой , то p = j, а характеристический полином принимает вид:

 

D(j) = a0(j - p1)(j - p2)...(j - pn).

 

При этом концы векторов j - pi будут находиться на мнимой оси (рис.68в). Если менять от - до + , то каждый вектор j - pi будет поворачиваться относительно своего начала pi на угол +p для левых и - p для правых корней (рис.68г).

Характеристический полином можно представить в виде

 

D(j) = |D(j)|ejarg(D(j)),

 

где    |D(j)| = a0|j - p1||j - p2|...|j - pn|,

arg(D(j)) = arg(j - p1) + arg(j - p2) + .. + arg(j - pn).

 

Пусть из n корней m - правые, а n - m - левые, тогда угол поворота вектора D(j) при изменении от - до + равен

 

= (n - m) - m,

 

или при изменении от 0 до + получаем

 

= (n - 2m)(/2).

 

Отсюда вытекает правило: изменение аргумента вектора b при изменении частоты от - до + равно разности между числом левых и правых корней уравнения D(p) = 0, умноженному на , а при изменении частоты от 0 до + эта разность умножается на /2.

Это и есть принцип аргумента. Он положен в основе всех частотных критериев устойчивости. Мы рассмотрим два наиболее распространенных критерия: критерий Михайлова и критерий Найквиста.

2. Критерий устойчивости Михайлова

Так как для устойчивой САУ число правых корней m = 0, то угол поворота вектора D(j) составит

 

= n/2.

 

То есть САУ будет устойчива, если вектор D(j) при изменении частоты от 0 до + повернется на угол n/2.

При этом конец вектора опишет кривую, называемую годографом Михайлова. Она начинается на положительной полуоси, так как D(0) = an, и последовательно проходит против часовой стрелки n квадрантов комплексной плоскости, уход в бесконечность в n - ом квадранте  (рис.69а).

Если это правило нарушается (например, число проходимых кривой квадрантов не равно n, или нарушается последовательность прохождения квадрантов  (рис.69б)), то такая САУ неустойчива - это и есть необходимое и достаточное условие критерия Михайлова.

Достоинства. Этот критерий удобен своей наглядностью. Так, если кривая проходит вблизи начала координат, то САУ находится вблизи границы устойчивости и наоборот. Этим критерием удобно пользоваться, если известно уравнение замкнутой САУ.

Для облегчения построения годографа Михайлова выражение для D(j) представляют суммой вещественной и мнимой составляющих:

 

 D(j) = a0(j - p1)(j - p2)...(j - pn) = a0(j)n + a1(j)n - 1 + ... + an = ReD(j) + jImD(j),

где

ReD(j) = an - an - 22 + an- 4 4 - ...,

ImD(j) = an - 1 - an - 33 + an- 5 5 - ....

 

Меняя от 0 до по этим формулам находят координаты точек годографа, которые соединяют плавной линией.

3. Критерий устойчивости Найквиста

Этот критерий позволяет судить об устойчивости замкнутой САУ по виду АФЧХ разомкнутой САУ (рис.70). Исследование разомкнутой САУ проще, чем замкнутой. Его можно производить экспериментально, поэтому часто оказывается, что АФЧХ разомкнутой САУ мы имеем или можем получить.

Передаточная функция разомкнутой САУ:

 

Wp(p) = Wp(p)/Dp(p) = > уравнение динамики: y(t) = e(t),

 

или

Dp(p)y(t) = Kp(p)e(t).

 

Здесь Dp(p) - характеристический полином разомкнутой САУ. То есть по виду корней уравнения Dp(p) = 0 можно судить об устойчивости разомкнутой САУ. Но это пока ничего не говорит об устойчивости замкнутой САУ.

Для того, чтобы получить уравнение динамики замкнутой САУ при свободном движении, считаем, что внешнее воздействие u = 0, тогда на вход первого звена САУ подается сигнал

 

e(t) = u(t) - y(t) = - y(t).

 

То есть

 

Dp(p)y(t) = Kp(p)( - y(t)),

 

следовательно уравнение замкнутой САУ:

 

(Dp(p) + Kp(p))y(t) = 0.

 

Таким образом, характеристическое уравнение замкнутой САУ:

 

Dз(p) = Dp(p) + Kp(p) = 0.

 

По виду его корней уже можно судить об устойчивости замкнутой САУ.

Воспользуемся вспомогательной функцией:

 

F(j) = 1 + Wр(j) = .

 

По сути дела она представляет собой АФЧХ разомкнутой САУ, сдвинутую на единицу вправо. Степени полиномов Dз(j) и Dp(j) равны n. Эти полиномы имеют свои корни pзi и ppi, то есть можно записать:

 

F(jw) = .

 

Каждую разность в скобках можно представить вектором на комплексной плоскости, конец которого скользит по мнимой оси (рис.63в). При изменении от - до + каждый из векторов j - pi будет поворачиваться на угол +p, если корень левый и -p, если корень правый.

Пусть полином Dз(jw) имеет m правых корней и n - m левых, а полином Dp(j) имеет g правых корней и n - g левых. Тогда суммарный угол поворота вектора функции F(j) при изменении частоты от - до + :

 

p[(n - m) - m)] - p[(n - g) - g] = 2p(g - m).

 

Если замкнутая САУ устойчива, то m = 0, тогда суммарный поворот вектора F(j) при изменении от - до + должен быть равен 2g, а при изменении от 0 до + он составит 2g/2.

Отсюда можно сформулировать критерий устойчивости Найквиста: если разомкнутая САУ неустойчива и имеет g правых корней, то для того, чтобы замкнутая САУ была устойчива необходимо и достаточно, чтобы вектор F(j) при изменении от 0 до + охватывал начало координат в положительном направлении g/2 раз, то есть АФЧХ разомкнутой САУ должна охватвать g/2 раз точку ( - 1, j0).

На рис.71а приведены АФЧХ разомкнутых САУ, устойчивых в замкнутом состоянии, на рис.71б - замкнутая САУ неустойчива.

На рис.71в и 71г  показаны АФЧХ разомкнутых астатических САУ, соответственно устойчивых и неустойчивых в замкнутом состоянии. Их особенность в том, что АФЧХ при 0 уходит в бесконечность.

 

В этом случае при использовании критерия Найквиста ее мысленно замыкают на вещественную ось по дуге окружности бесконечно большого радиуса.

Достоинство. Критерий Найквиста очень нагляден. Он позволяет не только выявить, устойчива ли САУ, но и, в случае, если она неустойчива, наметить меры по достижению устойчивости.

Контрольные вопросы

  1. Что называется частотными критериями устойчивости САУ?
  2. В чем преимущество частотных критериев устойчивости перед алгебраическими:
  3. Сформулируйте принцип аргумента.
  4. Сформулируйте критерий устойчивости Михайлова.
  5. Поясните каждый из годографов на рис.69. Как вы судите об устойчивости соответствующих САУ?
  6. Как из годографов на рис.69 соответствуют САУ, находящимся на границе устойчивости?
  7. Сформулируйте критерий устойчивости Найквиста.
  8. Поясните, являются ли устойчивыми САУ, АФЧХ которых в разомкнутом состоянии представлены на рис.71. Почему?
  9. В чем особенность использования критерия Найквиста для астатических САУ?
  10.  Как из годографов на рис.71 соответствуют САУ, находящимся на границе устойчивости?
CAD   ТПОИ   ЭИ   Эконометрика   к библиотеке  

(время поиска примерно 20 секунд)


Знаете ли Вы, как разрешается парадокс Ольберса?
(Фотометрический парадокс, парадокс Ольберса - это один из парадоксов космологии, заключающийся в том, что во Вселенной, равномерно заполненной звёздами, яркость неба (в том числе ночного) должна быть примерно равна яркости солнечного диска. Это должно иметь место потому, что по любому направлению неба луч зрения рано или поздно упрется в поверхность звезды.
Иными словами парадос Ольберса заключается в том, что если Вселенная бесконечна, то черного неба мы не увидим, так как излучение дальних звезд будет суммироваться с излучением ближних, и небо должно иметь среднюю температуру фотосфер звезд. При поглощении света межзвездным веществом, оно будет разогреваться до температуры звездных фотосфер и излучать также ярко, как звезды. Однако в дело вступает явление "усталости света", открытое Эдвином Хабблом, который показал, что чем дальше от нас расположена галактика, тем больше становится красным свет ее излучения, то есть фотоны как бы "устают", отдают свою энергию межзвездной среде. На очень больших расстояниях галактики видны только в радиодиапазоне, так как их свет вовсе потерял энергию идя через бескрайние просторы Вселенной. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 26.11.2020 - 18:27: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Аманды Вольмер - Карим_Хайдаров.
26.11.2020 - 16:10: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
26.11.2020 - 16:09: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
26.11.2020 - 15:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
26.11.2020 - 15:32: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Амары Ельской - Карим_Хайдаров.
26.11.2020 - 12:07: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Александра Флоридского - Карим_Хайдаров.
25.11.2020 - 07:52: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> ПРОБЛЕМА КРИМИНАЛИЗАЦИИ ЭКОНОМИКИ - Карим_Хайдаров.
25.11.2020 - 07:51: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от проф. В.Ю. Катасонова - Карим_Хайдаров.
25.11.2020 - 07:37: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Александры Андерссон - Карим_Хайдаров.
25.11.2020 - 06:51: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> "Зенит"ы с "Протон"ами будут падать - Карим_Хайдаров.
25.11.2020 - 06:47: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
24.11.2020 - 20:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.

Боровское исследовательское учреждение - Bourabai Research Bourabai Research Institution