к оглавлению

Потери в установившихся режимах

Потери в электрических машинах детально изучаются в соответствующих курсах. Основные составляющие потерь в машине:

Для нерегулируемого электропривода первую составляющую, пропорциональную I2, относят к переменным потерям, поскольку I є M, а последний определяется моментом сопротивления, т.е. зависит от технологического процесса. Две другие составляющие относят условно к постоянным потерям, так как потери в магнитопроводе определяются практически неизменными амплитудой и частотой магнитной индукции, а механические потери – практически неизменной скоростью. Таким образом, для нерегулируемого электропривода в первом приближении можно считать

                                D Р = К + I2R,                                         (8)

где         К – постоянные потери,

        I и R – ток и сопротивление силовой цепи.

Более детальное качественное представление о потерях дает рис. 2

– диаграмма потерь при передаче энергии от электрического источника Р1 = 3UфIфcosj (или Р1 = UI для электропривода постоянного тока) к вращающейся нагрузке Р2 = Мw . На диаграмме указана также электромагнитная мощность Рэм = Мw 0 – мощность в воздушном зазоре машины.

Рис. 2. Энергетическая диаграмма электрической машины

В принятых нами моделях электропривода для удобства предполагалось, что момент на валу равен моменту электромагнитному, а момент, связанный с потерями D М, отнесен к моменту сопротивления Мс. Это допущение, существенно упрощающее все этапы анализа и синтеза электропривода, не вносит ощутимых погрешностей в результаты в подавляющем большинстве случаев, поскольку сами потери сравнительно невелики. Разумеется, в редких специальных случаях, когда либо потери значительны, либо их аккуратный учет представляет почему-либо самостоятельную задачу, нужно пользоваться более полными и точными моделями.

Общее представление об энергетической эффективности нерегулируемого электропривода дает зависимость КПД двигателя с редуктором от относительной нагрузки. На рис. 3 для ориентировки приведена такая

зависимость для двигателей средней мощности (15-150 кВт) с хорошим редуктором (КПД больше 0,95).

Рис. 3. Типичная зависимость КПД от нагрузки

Необходимо подчеркнуть, что работа с недогрузкой приводит к заметному снижению КПД, поэтому неоправданное завышение мощности двигателя “на всякий случай” – вредно. Так же вредны в соответствии с (5) неудачно организованные циклы, когда холостой ход занимает в цикле большое место.

В регулируемом по скорости электроприводе энергетическая эффективность определяется главным образом выбранным способом регулирования, в связи с чем все способы можно разделить на две большие группы в зависимости от того, изменяется или нет w 0 в процессе регулирования.

К первой группе w 0 = const относятся все виды реостатного регулирования, а также регулирование асинхронного двигателя с к.з. ротором изменением напряжения при неизменной частоте. Если принять для простоты, что Рэм Р1 и D Р2 ” D Р, то для этой группы получим:

                (9)

т.е. потери в роторной (якорной) цепи при любой нагрузке пропорциональны разности скоростей D w (w 0 - w ) или скольжению

При реостатном регулировании лишь часть этих потерь, пропорциональная рассеивается внутри машины и греет ее. Другая часть, пропорциональная рассеивается вне машины, ухудшая, разумеется, энергетические показатели электропривода. Именно эта часть в каскадных схемах используется полезно.

Сложнее и неприятнее соотношение (9) проявляется в асинхронном электроприводе с к.з. ротором при регулировании изменением напряжения или каким-либо еще “хитрым” способом, но при постоянной частоте. Здесь вся мощность D Р2 = Р1s рассеивается в двигателе, нагревая его и делая способ практически непригодным для продолжительного режима работы.

Интересно, что соотношение (9) нельзя “обмануть”, хотя такие попытки делались и еще делаются.

К второй группе w 0 = var относятся все “безреостатные” способы регулирования в электроприводах постоянного тока – изменением напряжения и магнитного потока и частотное регулирование в электроприводах переменного тока.

Принципиально способы второй группы энергетически предпочтительны, поскольку в (9) разность скоростей D w ” const, однако следует учитывать, что в устройствах, обеспечивающих w 0 = var, тоже есть потери и при малых мощностях, небольших диапазонах регулирования и немалой стоимости устройств необходимы детальные сопоставления.

далее

к оглавлению


(время поиска примерно 20 секунд)

Знаете ли Вы, почему "черные дыры" - фикция?
Согласно релятивистской мифологии, "чёрная дыра - это область в пространстве-времени, гравитационное притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света (в том числе и кванты самого света). Граница этой области называется горизонтом событий, а её характерный размер - гравитационным радиусом. В простейшем случае сферически симметричной чёрной дыры он равен радиусу Шварцшильда".
На самом деле миф о черных дырах есть порождение мифа о фотоне - пушечном ядре. Этот миф родился еще в античные времена. Математическое развитие он получил в трудах Исаака Ньютона в виде корпускулярной теории света. Корпускуле света приписывалась масса. Из этого следовало, что при высоких ускорениях свободного падения возможен поворот траектории луча света вспять, по параболе, как это происходит с пушечным ядром в гравитационном поле Земли.
Отсюда родились сказки о "радиусе Шварцшильда", "черных дырах Хокинга" и прочих безудержных фантазиях пропагандистов релятивизма.
Впрочем, эти сказки несколько древнее. В 1795 году математик Пьер Симон Лаплас писал:
"Если бы диаметр светящейся звезды с той же плотностью, что и Земля, в 250 раз превосходил бы диаметр Солнца, то вследствие притяжения звезды ни один из испущенных ею лучей не смог бы дойти до нас; следовательно, не исключено, что самые большие из светящихся тел по этой причине являются невидимыми." [цитата по Брагинский В.Б., Полнарёв А. Г. Удивительная гравитация. - М., Наука, 1985]
Однако, как выяснилось в 20-м веке, фотон не обладает массой и не может взаимодействовать с гравитационным полем как весомое вещество. Фотон - это квантованная электромагнитная волна, то есть даже не объект, а процесс. А процессы не могут иметь веса, так как они не являются вещественными объектами. Это всего-лишь движение некоторой среды. (сравните с аналогами: движение воды, движение воздуха, колебания почвы). Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Боровское исследовательское учреждение - Bourabai Research Bourabai Research Institution