к оглавлению

Переходные процессы в ключевых схемах

В реальных ключевых схемах изменение состояния транзисторов под действием ступенчатого входного напряжения происходит в течение некоторого времени, зависящего от целого ряда факторов: типа транзистора ключа, режимов его работы, характера нагрузки и т.д. При этом изменения выходных токов ключа при отпирании и запирании транзистора отличаются от линейного закона, а форма выходного напряжения значительно отличается от формы входного.

Переходные процессы биполярного ключа

Процесс переключения биполярного транзистора определяется двумя факторами: процессами накопления и рассасывания неосновных носителей в базе, формирующих ток коллектора ik , и наличием емкостей эмиттерного и коллекторного переходов Cэ и Cк , которые перезаряжаются при переключениях. Если входное напряжение Uвх равно нулю, то транзистор закрыт и ток коллектора ik равен неуправляемому току Iк0 (рис. 14).

Рис.14. Переходные процессы в ключе на биполярном транзисторе

При подаче входного напряжения ступенчатой формы появляется базовый ток Iб такой же формы. Если величина Iб достаточна для ввода транзистора в насыщение, то возрастающий ток коллектора будет стремиться к уровню b Iб , где b – коэффициент усиления тока транзистора. Нелинейный характер нарастания ik определяется наличием емкостей переходов база-эмиттер (Cэ ) и база-коллектор (Cк). Максимальное значение ik ограничено сопротивлением Rk и не может превысить величины

Значение коллекторного тока, в тоже время, определяется количеством неосновных носителей в базе, поэтому, когда ток ik достигнет величины Ikнас, его рост прекратится, но рост числа носителей заряда в базе будет расти до величины соответствующей току Iб. Таким образом, в базе транзистора накапливается избыточный заряд неосновных носителей, не участвующих в создании коллекторного тока.

Как видно из диаграммы, процесс открывания транзистора занимает некоторый интервал времени tвкл. Уменьшение этого времени на практике достигают повышением в 1,5 - 3 раза базового тока, по отношению к току, достаточному для введения транзистор в насыщение.

Однако увеличение базового тока в этом случае приводит к увеличению избыточного заряда неосновных носителей в базе, которые после снятия входного сигнала (отключения тока Iб) продолжают поддерживать некоторое время tр коллекторный ток неизменным. Отрезок времени tр называют временем рассасывания неосновных носителей из базы. Только после удаления избыточного заряда из базы начинается процесс уменьшения коллекторного тока до уровня Iк0.

В быстродействующих ключевых схемах принимают меры для уменьшения tр, и соответственно, tвыкл, в целом.

Диоды Шотки

Ключевая схема на транзисторе Шоттки

Процесс рассасывания можно устранить, если транзистору сразу же после отирания создать режим, когда бы он находился на границе между состоянием насыщения и активным режимом работы. Этого можно достичь шунтированием перехода коллектор-база транзистора диодом Шоттки (рис. 15).

Рис. 15. Ключевая схема на транзисторе Шоттки

Когда транзистор закрыт или работает в активном режиме, потенциал коллектора выше потенциала базы и, следовательно, диод закрыт и не влияет на работу ключа. В режиме насыщения, когда транзистор полностью открыт, потенциал его коллектора оказывается ниже потенциала базы, что приводит к открыванию диода, на котором устанавливается напряжение менее 0,5 В, т. е. меньше напряжения, открывающего переход база–коллектор. Транзистор тем самым окажется на грани насыщения, так как диод зашунтирует через себя ту часть тока базы, которая создала бы избыточный заряд.

В интегральном исполнении диод Шоттки представляет собой контакт металла с коллекторной областью транзистора и составляет единую структуру, называемую транзистором Шоттки. Особенностью диода Шоттки является низкое прямое падение на нем напряжения порядка 0,4 В.

Переходные процессы в ключевой схеме на МДП-транзисторе

Основное влияние на характер протекания переходных процессов в ключевых схемах на полевых транзисторах оказывают емкости, образованные между их выводами (рис. 16).

а             б

Рис. 16. Переходные процессы в ключевой схеме на МДП-транзисторах: а – эквивалентная схема, б – временные диаграммы

При закрытом транзисторе выходная емкость Cси заряжена до напряжения, практически равного E. Когда входное напряжение превышает пороговое напряжение Uпор (напряжение открывания транзистора) в течение времени задержки

формируется проводящее состояние канала. Однако, при достаточно низком сопротивлении Rвн источника входного сигнала Uвх время задержки пренебрежимо мало.

Как только канал сформирован, емкость Cси начинает разряжаться постоянным током Iр, определяемым небольшим сопротивлением проводящего канала транзистора, в течение времени tвкл. За это время выходное напряжение ключа падает до величины близкой к нулю.

При запирании транзистора (уменьшение Uвх до нуля) происходит зарядка емкости Cси через резистор R от напряжения источника питания E в течение времени tвыкл. Это время, как правило, больше времени включения, так как сопротивление нагрузочного резистора R значительно больше сопротивления канала транзистора в проводящем состоянии.

В комплементарном ключе заряд и разряд нагрузочной емкости происходит в одинаковых условиях через открытый проводящий канал. Это объясняется симметрией схемы относительно входного напряжения и нагрузки. Соответственно, интервалы времени tвкл и tвыкл примерно одинаковы и почти на порядок меньше, чем у обычного ключа на МДП-транзисторах. Это преимущество сохраняется и при уменьшении напряжения питания.

далее

к оглавлению


(время поиска примерно 20 секунд)

Знаете ли Вы, что такое "усталость света"?
Усталость света, анг. tired light - это явление потери энергии квантом электромагнитного излучения при прохождении космических расстояний, то же самое, что эффект красного смещения спектра далеких галактик, обнаруженный Эдвином Хабблом в 1926 г.
На самом деле кванты света, проходя миллиарды световых лет, отдают свою энергию эфиру, "пустому пространству", так как он является реальной физической средой - носителем электромагнитных колебаний с ненулевой вязкостью или трением, и, следовательно, колебания в этой среде должны затухать с расходом энергии на трение. Трение это чрезвычайно мало, а потому эффект "старения света" или "красное смещение Хаббла" обнаруживается лишь на межгалактических расстояниях.
Таким образом, свет далеких звезд не суммируется со светом ближних. Далекие звезды становятся красными, а совсем далекие уходят в радиодиапазон и перестают быть видимыми вообще. Это реально наблюдаемое явление астрономии глубокого космоса. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Боровское исследовательское учреждение - Bourabai Research Bourabai Research Institution