к оглавлению

ФИДЕРНЫЕ ЛИНИИ

  1. Антенны
  2. Излучение радиоволн
  3. Элементы теории антенн
  4. Применение современных ЭВМ для расчёта антенн
  5. Поле излучения антенны
  6. Параметры антенны
  7. Собственная частота антенны
  8. Направляющие свойства вибраторов
  9. Энергетические параметры излучения антенны
  10. Методы измерения параметров антенн
  11. Типы антенн
  12. Малошумящие антенны
  13. Антенны с обработкой сигнала
  14. Вибратор Герца
  15. Симметичный полуволновый вибратор Герца
  16. Простейшие приемные и передающие антенны
  17. Антенны для коротких и метровых волн
  18. Антенные устройства и распространение радиоволн
  19. Диаграмма направленности антенны
  20. Апертурный синтез диаграмм направленности антенн
  21. Щелевые антенны
  22. Рамочная и магнитная антенны
  23. Антенна радиотелескопа
  24. Широкополосная антенна
  25. Адаптивная антенна
  26. Антенна поверхностных волн
  27. Активная антенна
  28. Входные цепи радиоприемных устройств
  29. Входные устройства, радиоприемных устройств
  30. Фидерные линии
  31. Сопротивление излучения
  32. Литература по антеннам

Фидерные линии, работающие в режиме стоячих (вернее, смешанных) волн, применяются только в случае, если длина фидера невелика, например равна 1/4 (лямбда), или 1/2 (лямбда). Такие фидеры, в частности, используются для распределения энергии между отдельными элементами сложных направленных антенн.

В линиях со стоячей волной потери энергии выше, а кпд ниже, чем у линий с бегущей волной. Линия со стоячей волной должна быть строго определенной длины, равной целому числу (четному или нечетному) четвертей волны.

Линии с бегущей волной имеют ряд существенных преимуществ. Потери энергии в них меньше, и поэтому кпд выше, что важно при значительной длине линии. Напряжение и ток в случае бегущих волн меньше, чем при стоячих волнах. При меньшем напряжении предъявляются менее жесткие требования к изоляции линии.

Удобно то, что при линии с бегущей волной генератор нагружен на постоянное и чисто активное сопротивление, равное волновому сопротивлению линии и не зависящее от ее длины. Поэтому линия с бегущей волной может быть сделана любой длины независимо от длины волны. Вся энергия волн, передаваемых по линии, за исключением небольшой ее доли, теряющейся в самой линии, отдается в передающую антенну.

Чтобы получить режим бегущей волны, надо обеспечить равенство нагрузочного сопротивления и волнового сопротивления линии, т. е. согласовать линию с нагрузкой. Однако такое согласование, при котором коэффициент бегущей волны кбв = 1, получить трудно. Практически уже хорошо, если кбв = 0,8-0,9. При этом ухудшение работы линии незначительно. Во многих случаях довольствуются даже величиной кбв = 0,5-0,7.


ФИДЕРНЫЕ ЛИНИИ


Рис.1 - Типы симметричных фидерных линий



Несколько типичных конструкций cимметричных фидеров показаны на рис.1. Для фидеров по рис.1 а и б, изолирующие распорки делают из высококачественного диэлектрика. Фидер с перекрещивающимися проводами (рис.1 б) применяется для приемных антенн. Он обладает меньшим антенным эффектом. В простейшем случае для приемных антенн используется фидер, рис.1 в, состоящий из двух свитых вместе изолированных проводов (в виде шнура). Очень удобны симметричные кабели ленточного типа (рис.1 г), имеющие два провода, запрессованные в ленту из гибкой пластмассы.

Для уменьшения емкости лента между проводами делается тонкой или имеет отверстия. На рис.1 д, показан симметричный экранированный кабель, у которого антенный эффект отсутствует. Симметричные кабели, выпускаемые промышленностью, обычно имеют Z0 от 30 до 300 ом.

Как видно, некоторые типы симметричных фидеров могут быть изготовлены самостоятельно из двух проводов (рис.1 а, б и в).Применяемые для несимметричных фидеров коаксиальные кабели изготовляются исключительно в заводских условиях. Промышленность выпускает много различных типов коаксиальных высокочастотных кабелей. Большинство из них имеет волновое сопротивление от 50 до 90 ом и рассчитано на пробивное напряжение от 1 до 15 кв. Устройство наиболее распространенного кабеля со сплошной изоляцией показано на рис.2.


ФИДЕРНЫЕ ЛИНИИ


Рис.2 - Коаксиальный кабель для фидерной линии



В таких кабелях в качестве изоляции применяется гибкая пластмасса, вносящая малые потери на высоких частотах (например, полиэтилен). Внутренний провод бывает одножильный или многожильный. Внешний провод сделан в виде оплетки из медных проволочек и покрыт сверху защитной пластмассовой оболочкой.

к оглавлению


(время поиска примерно 20 секунд)

Знаете ли Вы, что cогласно релятивистской мифологии "гравитационное линзирование - это физическое явление, связанное с отклонением лучей света в поле тяжести. Гравитационные линзы обясняют образование кратных изображений одного и того же астрономического объекта (квазаров, галактик), когда на луч зрения от источника к наблюдателю попадает другая галактика или скопление галактик (собственно линза). В некоторых изображениях происходит усиление яркости оригинального источника." (Релятивисты приводят примеры искажения изображений галактик в качестве подтверждения ОТО - воздействия гравитации на свет)
При этом они забывают, что поле действия эффекта ОТО - это малые углы вблизи поверхности звезд, где на самом деле этот эффект не наблюдается (затменные двойные). Разница в шкалах явлений реального искажения изображений галактик и мифического отклонения вблизи звезд - 1011 раз. Приведу аналогию. Можно говорить о воздействии поверхностного натяжения на форму капель, но нельзя серьезно говорить о силе поверхностного натяжения, как о причине океанских приливов.
Эфирная физика находит ответ на наблюдаемое явление искажения изображений галактик. Это результат нагрева эфира вблизи галактик, изменения его плотности и, следовательно, изменения скорости света на галактических расстояниях вследствие преломления света в эфире различной плотности. Подтверждением термической природы искажения изображений галактик является прямая связь этого искажения с радиоизлучением пространства, то есть эфира в этом месте, смещение спектра CMB (космическое микроволновое излучение) в данном направлении в высокочастотную область. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 25.01.2021 - 18:00: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от проф. В.Ю. Катасонова - Карим_Хайдаров.
25.01.2021 - 07:49: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> ПРОБЛЕМА КРИМИНАЛИЗАЦИИ ЭКОНОМИКИ - Карим_Хайдаров.
25.01.2021 - 06:27: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Александра Флоридского - Карим_Хайдаров.
25.01.2021 - 05:48: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Пламена Паскова - Карим_Хайдаров.
24.01.2021 - 11:45: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
23.01.2021 - 12:06: ТЕОРЕТИЗИРОВАНИЕ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ - Theorizing and Mathematical Design -> ФУТУРОЛОГИЯ - прогнозы на будущее - Карим_Хайдаров.
23.01.2021 - 09:08: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ФАЛЬСИФИКАЦИЯ ИСТОРИИ - Карим_Хайдаров.
23.01.2021 - 08:03: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
23.01.2021 - 06:26: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Анны ван Дэнски - Карим_Хайдаров.
22.01.2021 - 18:03: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Амары Ельской - Карим_Хайдаров.
22.01.2021 - 13:40: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вячеслава Осиевского - Карим_Хайдаров.
20.01.2021 - 17:39: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Проблема народного образования - Карим_Хайдаров.
Боровское исследовательское учреждение - Bourabai Research Bourabai Research Institution