к библиотеке   к оглавлению   визуальные среды - 4GL   технологии программирования

Понятие о проверке статистических гипотез

Одна из часто встречающихся на практике задач, связанных с применением статистических методов, состоит в решении вопроса о том, должно ли на основании данной выборки быть принято или, напротив, отвергнуто некоторое предположение (гипотеза) относительно генеральной совокупности (случайной величины).

Проверка гипотез - это процедура сопоставления высказанного предположения (гипотезы) с выборочными данными.

Задачи статистической проверки гипотез ставятся в следующем виде: относительно некоторой генеральной совокупности высказывается та или иная гипотеза Н. Из этой генеральной совокупности извлекается выборка. Требуется указать правило, при помощи которого можно было бы по выборке решить вопрос о том, следует ли отклонить гипотезу Н или принять ее.

Следует отметить, что статистическими методами гипотезу можно только опровергнуть или не опровергнуть, но не доказать. Например, для проверки утверждения (гипотеза Н) автора, что "в рукописи нет ошибок", рецензент прочел (изучил) несколько страниц рукописи.

Если он обнаружил хотя бы одну ошибку, то гипотеза Н отвергается, в противном случае – не отвергается, говорят, что "результат проверки с гипотезой согласуется".

Выдвинутая гипотеза может быть правильной или неправильной, поэтому возникает необходимость ее проверки.

Под статистической гипотезой (или просто гипотезой) понимают всякое высказывание (предположение) о генеральной совокупности, проверяемое по выборке.

Статистические гипотезы делятся на гипотезы о параметрах распределения известного вида (это так называемые параметрические гипотезы) и гипотезы о виде неизвестного распределения (непараметрические гипотезы).

Одну из гипотез выделяют в качестве основной (или нулевой) и обозначают , а другую, являющуюся логическим отрицанием , т.е. противоположную – в качестве конкурирующей (или альтернативной) гипотезы и обозначают .

Гипотезу, однозначно фиксирующую распределение наблюдений, называют простой (в ней идет речь об одном значении параметра), в противном случае – сложной.

Имея две гипотезы и , надо на основе выборки принять либо основную гипотезу , либо конкурирующую .

Правило, по которому принимается решение принять или отклонить гипотезу (соответственно, отклонить или принять ), называется статистическим критерием (или просто критерием) проверки гипотезы .

Проверку гипотез осуществляют на основании результатов выборки , из которых формируют функцию выборки , называемой статистикой критерия.

Основной принцип проверки гипотез состоит в следующем. Множество возможных значений статистики критерия разбивается на два непересекающихся подмножества: критическую область S, т.е. область отклонения гипотезы и область принятия этой гипотезы. Если фактически наблюдаемое значение статистики критерия (т.е. значение критерия, вычисленное по выборке: ) попадает в критическую область S, то основная гипотеза отклоняется и принимается альтернативная гипотеза ; если же попадает в , то принимается , а отклоняется.

При проверке гипотезы может быть принято неправильное решение, т.е. могут быть допущены ошибки двух родов.

Ошибка первого рода состоит в том, что отвергается нулевая гипотеза , когда на самом деле она верна.

Ошибка второго рода состоит в том, что отвергается альтернативная гипотеза , когда она на самом деле верна.

Вероятность ошибки 1-го рода (обозначается через ) называется уровнем значимости критерия.

Очевидно, . Чем меньше , тем меньше вероятность отклонить верную гипотезу. Допустимую ошибку 1-го рода обычно задают заранее.

В одних случаях считается возможным пренебречь событиями, вероятность которых меньше 0,05 ( означает, что в среднем в 5 случаях из 100 испытаний верная гипотеза будет отвергнута), в других случаях, когда речь идет, например, о разрушении сооружений, гибели судна и т.п., нельзя пренебречь обстоятельствами, которые могут появиться с вероятностью, равной 0,001.

Обычно для используются стандартные значения: ; 0,01; 0,005; 0,001.

Вероятность ошибки 2-го рода обозначается через , т.е. .

Величину , т.е. вероятность недопущения ошибки 2-го рода (отвергнуть неверную гипотезу , принять верную ), называется мощностью критерия.

Очевидно, .

Чем больше мощность критерия, тем вероятность ошибки 2-го рода меньше, что, конечно, желательно (как и уменьшение ).

Последствия ошибок 1-го, 2-го рода могут быть совершенно различными: в одних случаях надо минимизировать , в другом – . Так, применительно к судебной системе, ошибка 1-го рода приводит к оправданию виновного, ошибка 2-го рода – осуждению невиновного.

Отметим, что одновременное уменьшение ошибок 1-го и 2-го рода возможно лишь при увеличении объема выборок. Поэтому обычно при заданном уровне значимости отыскивается критерий с наибольшей мощностью.

Методика проверки гипотез сводится к следующему:

  1. Располагая выборкой , формируют нулевую гипотезу и альтернативную .
  2. В каждом конкретном случае подбирают статистику критерия .
  3. По статистике критерия и уровню значимости определяют критическую область S). Для ее отыскания достаточно найти критическую точку , т.е. границу (или квантиль), отделяющую область S от .
  4. Границы областей определяются, соответственно, из соотношений: , для правосторонней критической области S (рис. 7); , для левосторонней критической области S (рис. 8); , для двусторонней критической области S (рис. 9).
  5. Для каждого критерия имеются соответствующие таблицы, по которым и находят критическую точку, удовлетворяющую приведенным выше соотношениям.
  6. Для полученной реализации выборки подсчитывают значение критерия, т.е. .
  7. Если (например, для правосторонней области S), то нулевую гипотезу отвергают; если же (), то нет оснований, чтобы отвергнуть гипотезу
к библиотеке   к оглавлению   визуальные среды - 4GL   технологии программирования

(время поиска примерно 20 секунд)

Знаете ли Вы, что в 1974 - 1980 годах профессор Стефан Маринов из г. Грац, Австрия, проделал серию экспериментов, в которых показал, что Земля движется по отношению к некоторой космической системе отсчета со скоростью 360±30 км/с, которая явно имеет какой-то абсолютный статус. Естественно, ему не давали нигде выступать и он вынужден был начать выпуск своего научного журнала "Deutsche Physik", где объяснял открытое им явление. Подробнее читайте в FAQ по эфирной физике.


НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 24.01.2021 - 11:45: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
24.01.2021 - 08:05: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Александра Флоридского - Карим_Хайдаров.
23.01.2021 - 12:06: ТЕОРЕТИЗИРОВАНИЕ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ - Theorizing and Mathematical Design -> ФУТУРОЛОГИЯ - прогнозы на будущее - Карим_Хайдаров.
23.01.2021 - 09:08: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ФАЛЬСИФИКАЦИЯ ИСТОРИИ - Карим_Хайдаров.
23.01.2021 - 08:03: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
23.01.2021 - 06:26: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Анны ван Дэнски - Карим_Хайдаров.
22.01.2021 - 18:59: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от проф. В.Ю. Катасонова - Карим_Хайдаров.
22.01.2021 - 18:03: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Амары Ельской - Карим_Хайдаров.
22.01.2021 - 13:40: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вячеслава Осиевского - Карим_Хайдаров.
21.01.2021 - 17:54: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> ПРОБЛЕМА КРИМИНАЛИЗАЦИИ ЭКОНОМИКИ - Карим_Хайдаров.
21.01.2021 - 08:17: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Пламена Паскова - Карим_Хайдаров.
20.01.2021 - 17:39: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Проблема народного образования - Карим_Хайдаров.
Боровское исследовательское учреждение - Bourabai Research Bourabai Research Institution