УМОВ Николай Алексеевич
ЗАКОНЫ КОЛЕБАНИИ В НЕОГРАНИЧЕННОЙ СРЕДЕ ПОСТОЯННОЙ УПРУГОСТИ

Впервые напечатано в Математическом сборнике, т. 5, 1870 г. (Прим. ред.)

П. ЗАКОНЫ ПОПЕРЕЧНЫХ КОЛЕБАНИЙ

§ 10. Мы будем рассматривать уравнения с частными производными (13) и (15) как две системы, интегралы которых должны быть изысканы.

Займёмся определением величин А', В', Г' — интегралов уравнений (15). Так как только два из них существенны, то мы должны составить ещё третье уравнение с частными производными. Его получим, дифференцируя уравнения (14) последовательно по ;-, р1; р2 и складывая их.

Находим:

Интегралы уравнений (15) мы можем себе представить состоящими из двух частей. Одна А", В", Г", предназначенная для удовлетворения этих уравнений, когда вторые части равны нулю, и другая А^, Bg, l 'е, назначенная для удовлетворения полных уравнений (15).

Мы находим, означая через F' некоторую функцию

от

Теперь для величин В^, Г^, А'е мы можем выбрать выражения наиболее простые. Примем:

Функции А", В", I" и независимо от них А'е, В'е, Т'е должны удовлетворять уравнению (10), откуда получаем:

И затем, полагая

вследствие чего выражения (19) будут:

находим уравнение с частными производными для функ-

Кроме найденных условий, которым должны подчиниться функции F' и Ü, мы имеем ещё другие, которые найдутся, вставляя в уравнение (14) величины А', В', Г'.

Находим:

Если продифференцируем первое из этих уравнений с частными производными по p и подставим в него первые части двух последних уравнений (24), оно представит сумму уравнений с частными производными (20) и (23). Итак, из трёх уравнений (24) только два существенны.

Полагая H — 1, означая через Д2 дифференциальный параметр второго порядка от некоторой функции и через Д2—разность этого параметра и его первого члена, т. е.

находим следующие уравнения с частными производными, интеграция которых содержит решение исследуемого вопроса:

Одно из уравнений (26) может быть заменено следующим, получаемым из них обоих:

Общий интеграл уравнения A2Q = 0 может быть выражен помощью произвольных функций.

Означим через LT и L интегралы дифференциальных уравнений

Умножая выражения (29) па интегрирующие множители, приравнивая их dL n dLv находя производные от (l по переменным г> н рь которые входят через L и L],, мы легко убедимся, что уравнение Д22 = 0 тождественно равно нулю. Следовательно, интегрируя уравнения &2F' — О и подставляя найденный интеграл имеете с выражением (30) в уравнения (26), мы определим вид функций в и (~)1.

Частный случай. Приложим найденные формулы i; сфере.

где т = \ —— есть термометрический параметр конусов широты. Следовательно,

Поэтому подстановка величины Q в уравнения (26) даст нам, после лёгких преобразований и полагая

Рассмотрим случаи r=const, что по первому из у равнении (24) требует, чтобы и Л2 f 4p- j = 0.

Уравнения (33) удовлетворяются частным предположением

которое мы распространим отдельно па каждую из функций (-) и 6j.

Означая через f-'-~>, Ф(а), /("), uj') произвольные функции, где а есть индекс, по которому производится суммирование, находим интеграцией и обращая внимание на значение функций о и Ил:

Отсюда

Итак, в рассматриваемом случае амплитуды колебаний обратно пропорциональны расстоянию от центра сферической волны. Следовательно, живая сила или напряжение колебаний обратно пропорционально квадрату того же расстояния. Величина ;•, входящая в показатель, указывает на зависимость фазы от p и при я мнимом войдёт под знаки синуса и косинуса. Коэффициенты при показательной функции указывают на зависимость амплитуды от наклонности луча к двум основным плоскостям.

Положение этих основных плоскостей может определяться какими-нибудь условиями или же остаётся неопределённым.

В последнем случае, представляя себе, что эти плоскости, оставаясь друг к другу нормальными, пробегают в весьма короткое время все азимуты, получим колебания, которые будут совершаться в каждой точке по всем направлениям; мы назовём их естественными в отличие от колебаний поляризованных, имеющих место при определённом положении основных плоскостей.

Действительные и мнимые части выражений (36), удовлетворяя независимо основным дифференциальным уравнениям колебания, должны быть отдельны друг от друга. Ниже мы дадим для сферы выражения более общие, по окончательное их исследование будет предложено во второй статье.

 

назад вперед

 


Знаете ли Вы, в чем ложность понятия "физический вакуум"?

Физический вакуум - понятие релятивистской квантовой физики, под ним там понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. Физическим вакуумом релятивистские теоретики называют полностью лишённое вещества пространство, заполненное неизмеряемым, а значит, лишь воображаемым полем. Такое состояние по мнению релятивистов не является абсолютной пустотой, но пространством, заполненным некими фантомными (виртуальными) частицами. Релятивистская квантовая теория поля утверждает, что, в согласии с принципом неопределённости Гейзенберга, в физическом вакууме постоянно рождаются и исчезают виртуальные, то есть кажущиеся (кому кажущиеся?), частицы: происходят так называемые нулевые колебания полей. Виртуальные частицы физического вакуума, а следовательно, он сам, по определению не имеют системы отсчета, так как в противном случае нарушался бы принцип относительности Эйнштейна, на котором основывается теория относительности (то есть стала бы возможной абсолютная система измерения с отсчетом от частиц физического вакуума, что в свою очередь однозначно опровергло бы принцип относительности, на котором постороена СТО). Таким образом, физический вакуум и его частицы не есть элементы физического мира, но лишь элементы теории относительности, которые существуют не в реальном мире, но лишь в релятивистских формулах, нарушая при этом принцип причинности (возникают и исчезают беспричинно), принцип объективности (виртуальные частицы можно считать в зависимсоти от желания теоретика либо существующими, либо не существующими), принцип фактической измеримости (не наблюдаемы, не имеют своей ИСО).

Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.

Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик Анри Пуанкаре, уже нельзя. Слишком много фактов противоречит этому.

Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.

Однако такая постановка является внутренне противоречивой (виртуальные частицы ненаблюдаемы и их по произволу можно считать в одном случае отсутствующими, а в другом - присутствующими) и противоречащей релятивизму (то есть отрицанию эфира, так как при наличии таких частиц в вакууме релятивизм уже просто невозможен). Подробнее читайте в FAQ по эфирной физике.

Bourabai Research Institution home page

Боровское исследовательское учреждение - Bourabai Research Bourabai Research Institution