УМОВ Николай Алексеевич
ЗАКОНЫ КОЛЕБАНИЙ В НЕОГРАНИЧЕННОЙ СРЕДЕ ПОСТОЯННОЙ УПРУГОСТИ

Впервые напечатано в Математическом сборнике, т. 5, 1870 г. (Прим. ред.)

Задачи о колебаниях поперечных и продольных в средах постоянной упругости решаются независимо одна от другой. Наглядность и успешность исследования зависят от приведения основных дифференциальных уравнений колебаний к виду, соответствующему условиям вопроса. Если ми будем относить положение точек пространства к тройной системе ортогональных поверхностей, из которых одна есть поверхность волны, то предвидится возможность самым разделением задач упростить основные уравнения и определить произвольные функции или произвольные постоянные, введённые интеграцией, с помощью данного состояния начальной волны.

Чтобы осуществить эти предположения, мы должны были начать с исследования общих свойств волн в средах постоянной упругости и поверхностей, к ним ортогональных. Мы приходим, между прочим, к двум теоремам:

Если выберем за параметр волны отрезок луча между начальным и последующим положением волны, то её дифференциальный параметр первого порядка есть величина постоянная и равная 1 во всём пространстве.

Дифференциальные параметры первого порядка поверхностей, ортогональных к волне, пропорциональны её радиусам кривизны.

Другая часть исследования касается определения по данному виду волны поперечных колебаний, ею распространяемых. Вводя в основные дифференциальные уравнения колебаний избранные нами криволинейные координаты, мы получаем уравнения для поперечных колебаний, приравнивая нулю: во-первых, колебание, нормальное к касательной плоскости, и, во-вторых, члены, имеющие коэффициентом квадрат скорости продольных колебаний. Приведение найденных выражений к окончательному виду и их интеграция составляют содержание этого отдела.

Между прочим, мы приходим к таким заключениям:

Волновые поверхности могут быть разделены на три группы.

К первой относятся поверхности сферы и круглого цилиндра, допускающие прямолинейную поляризацию по той или другой линии кривизны.

Ко второй относятся поверхности, допускающие прямолинейную поляризацию по одной из линий кривизны. Так, поверхности вращения, за исключением указанных выше, допускают прямолинейную поляризацию в меридиональной плоскости, но не в перпендикулярной. Поверхности цилиндрические, за исключением круглого цилиндра, не допускают прямолинейной поляризации в плоскости, параллельной образующей, но только в перпендикулярной к ней.

К третьей относятся все остальные поверхности, не допускающие прямолинейной поляризации ни по одной из линий кривизны.

Поставленная нами задача решается для среды постоянной упругости и плотности не бесконечно малой. Распространение же найденных выводов на световые колебания при некоторых особых предположениях помещено в конце настоящей статьи.

Третья часть исследования занимается вопросом о продольных колебаниях. Здесь мы пришли к выводам, полученным Пуассоном иным путём.

Наше исследование имеет непосредственное приложение к явлениям звука и к явлениям как колебаний поперечных, так и продольных в средах неограниченных или в телах, ограниченных поверхностями, принадлежащими к одному и тому же семейству волн.

 

WEB-мастер приносит свои извинения за многочисленные опечатки после сканирования мелкого текста книги. Постепенно текст будет исправляться.

 

Знаете ли Вы, что cогласно релятивистской мифологии "гравитационное линзирование - это физическое явление, связанное с отклонением лучей света в поле тяжести. Гравитационные линзы обясняют образование кратных изображений одного и того же астрономического объекта (квазаров, галактик), когда на луч зрения от источника к наблюдателю попадает другая галактика или скопление галактик (собственно линза). В некоторых изображениях происходит усиление яркости оригинального источника." (Релятивисты приводят примеры искажения изображений галактик в качестве подтверждения ОТО - воздействия гравитации на свет)
При этом они забывают, что поле действия эффекта ОТО - это малые углы вблизи поверхности звезд, где на самом деле этот эффект не наблюдается (затменные двойные). Разница в шкалах явлений реального искажения изображений галактик и мифического отклонения вблизи звезд - 1011 раз. Приведу аналогию. Можно говорить о воздействии поверхностного натяжения на форму капель, но нельзя серьезно говорить о силе поверхностного натяжения, как о причине океанских приливов.
Эфирная физика находит ответ на наблюдаемое явление искажения изображений галактик. Это результат нагрева эфира вблизи галактик, изменения его плотности и, следовательно, изменения скорости света на галактических расстояниях вследствие преломления света в эфире различной плотности. Подтверждением термической природы искажения изображений галактик является прямая связь этого искажения с радиоизлучением пространства, то есть эфира в этом месте, смещение спектра CMB (космическое микроволновое излучение) в данном направлении в высокочастотную область. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМАФорум Рыцари теории эфира
Рыцари теории эфира
  27.04.2016 - 07:59: СОВЕСТЬ - Conscience -> Проблема государственного терроризма - Карим_Хайдаров.
25.04.2016 - 07:47: СОВЕСТЬ - Conscience -> КОЛЛАПС МИРОВОЙ ФИНАНСОВОЙ СИСТЕМЫ - Карим_Хайдаров.
24.04.2016 - 21:11: АСТРОФИЗИКА - Astrophysics -> Комета 67Р/Чурюмова-Герасименко и проблема ее происхождения - Евгений_Дмитриев.
20.04.2016 - 12:33: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
17.04.2016 - 22:31: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
09.04.2016 - 06:59: АСТРОФИЗИКА - Astrophysics -> Сезонные колебания уровня вод морей и океанов - Юсуп_Хизиров.
28.03.2016 - 16:42: СОВЕСТЬ - Conscience -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
17.03.2016 - 11:20: СЕЙСМОЛОГИЯ - Seismology -> Запасы воды под Землёй - Карим_Хайдаров.
15.03.2016 - 16:15: ЦИТАТЫ ЧУЖИХ ФОРУМОВ - Outside Quotings -> ВЫМИРАНИЕ ДИНОЗАВРОВ на www.nkj.ru - Карим_Хайдаров.
23.02.2016 - 20:34: Беседка - Chatter -> Приливы и отливы - Юсуп_Хизиров.
19.02.2016 - 05:38: ФИЗИКА ЭФИРА - Aether Physics -> Скорость распространения гравитации - Карим_Хайдаров.
Боровское исследовательское учреждение - Bourabai Research Bourabai Research Institution