к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Евклидово пространство

Евклидово пространство - конечномерное векторное пространство с положительно определённым скалярным произведением. Является непосредств. обобщением обычного трёхмерного пространства. В Е. п. существуют декартовы координаты, в к-рых скалярное произведение (ху)векторов х- (x1, . . . , хny = (y1, . . . , yп)имеет вид (xy)=x1y1+. . .+хnуп. В произвольных координатах скалярное произведение по определению удовлетворяет условиям: 1) (хх)/0, (хх) = 0 лишь при x=0; 2) (ху) = (ух)*; 3) (aху) = a(ху); 4) (x{y+z}) =(xy)+ (xz), где a - любое комплексное число, * означает комплексное сопряжение. В Е. п. имеет место неравенство Коши - Буняковского ||2[(хх)(уу). Число
025_044-8.jpg
наз. нормой (или длиной) вектора х, а угол q между векторами х, у находят из ф-лы cosq= (xy)/|x| |у|. Первоначально евклидовыми наз. пространства, в к-рых выполнены аксиомы евклидовой геометрии, осн. понятиями к-рой являются длина векторов и угол между ними. Бесконечномерное Е. п. обычно наз. гильбертовым пространством. Пространство, в к-ром нарушено условие 1) положительности скалярного произведения, наз. псевдоевклидовым пространством. Пространство, в к-ром п четно, а условие 2) заменяется условием (ху) = --(ух), наз. симплектическим пространством.

'; ?>

Литература по Евклидову пространству

  1. Гельфанд И. М., Лекции по линейной алгебре, 4 изд., М., 1971;
  2. Дубровин Б. А., Новиков С. П., Фоменко А. Т., Современная геометрия, 2 изд., М., 1986.

С. В. Молодцов

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ