к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Ион

Ион (от греч. ion - идущий) - электрически заряженная частица, образующаяся при отрыве или присоединении одного или неск. электронов (или др. заряж. частиц) к атому, молекуле, радикалу и др. иону. Положительно заряженные И. наз. катионами, отрицательно заряженные - анионам и. И. обозначают хим. символом с индексом (вверху справа), указывающим знак и величину заряда - кратность И.- в единицах заряда электрона (напр., Li + , H2+, SO42-). Атомные И. обозначают также хим. символом элемента с римскими цифрами, указывающими кратность И. (напр., NI, NII, NIII, что соответствует N, N+ , N2+; в этом случае римские цифры являются спектроскопич. символами Z, они больше заряда иона Zi на единицу: Z=Zi+l). Последовательность И. различных хим. элементов, содержащих одинаковое число электронов, образует изоэлектронный ряд (см. напр., Водородоподобные атомы ).Понятие и термин "И." (а также "катион" и "анион") введены в 1834 М. Фарадеем (М. Faraday). Для удаления электрона из нейтрального атома или молекулы необходимо затратить определ. энергию, к-рая наз. энергией ионизации. Энергия ионизации, отнесённая к заряду электрона, называется ионизационным потенциалом. Характеристика, противоположная энергии ионизации - сродство к электрону - равна энергии связи дополнит, электрона в отрицат. И. Нейтральные атомы и молекулы ионизируются под действием квантов оптич. излучения, рентг. и g-излучения, электрич. поля при столкновениях с др. атомами, электронами и др. частицами и т. п. И. может представлять собой как неустойчивое состояние атома, молекулы или радикала, так и быть вполне устойчивой частицей, существующей сколь угодно долго (напр., И. Na+ в водном растворе поваренной соли NaCl очень устойчивы, т. к. координированы с молекулами воды, образующими прочную околоионную оболочку и препятствующими сближению их с С1-). Молекула, содержащая неск. групп, переходящих в ионизованное состояние, наз. полиэлектролитом (напр., молекула ДНК, несущая в каждой своей повторяющейся единице отрицательно заряженную фосфатную группу РО4-). Нек-рые молекулы, находящиеся в растворах и кристаллах, остаются в целом электронейтральными, хотя и содержат в разл. её участках противоположно заряженные группы, их наз. цвиттерионами. Так, молекула аминокислоты H2N - СНР-СООН (Р - боковой радикал) переходит в цвиттерионную форму H3N-СНР-СОО-, что сопровождается переносом протона с группы СООН на группу H2N. Комплекс, состоящий из неск. нейтральных атомов или молекул и простого И. образует сложный И., наз. кластерным ионом. В газах при обычных условиях образующиеся И. недолговечны, однако при высоких темп-pax и давлениях степень ионизации газа растёт с ростом температуры и давления и при очень высоких темп-pax и давлениях газ переходит в плазму. В жидкостях, в зависимости от природы растворителя и растворённого вещества, катионы и анионы могут располагаться на практически бесконечном расстоянии друг от друга (в том случае, когда они окружены молекулами растворителя), но могут оказаться и достаточно близко друг от друга и, сильно взаимодействуя, образовывать т. н. ионные пары. Соли в твёрдом состоянии обычно образуют ионные кристаллы .Энергия взаимодействия атомных И. как функции расстояния между ними может быть вычислена с помощью разл. приближенных методов (см. Межмолекулярное взаимодействие). Уровни энергии атомных и молекулярных И. и нейтральных частиц различны и в принципе могут быть рассчитаны методами квантовой механики, как и энергии ионизации. Оптич. спектры атомных И. аналогичны спектрам нейтральных атомов с тем же числом электронов, они только смещаются в коротковолновый диапазон, т. к. длины воли спектральных линий, соответствующих квантовым переходам между уровнями энергии с различными значениями гл. квантового числа, пропорциональны квадрату заряда ядра. В спектрах И. появляются т. наз. сателлитные линии, анализ к-рых позволяет исследовать структуру и свойства многозарядных ионов. Ионная компонента оказывает существенное влияние на параметры лабораторной и астрофизической плазмы. Изучение И. важно для различных областей физики и химии плазмы, астрофизики, квантовой электроники, для исследования строения веществ п т. д. И. широко используются в эксперим. исследованиях и приборах (масс-спектрометры, Вильсона камеры, ионный проектор, ионные пучки и т. д.).

'; ?>

Литература по ионам

  1. Смирнов Б. М., Отрицательные ионы, М., 1978;
  2. Пресняков Л. П., Шевелько В. П., Янев Р. К., Элементарные процессы с участием многозарядных ионов, М., 1986.

В. Г. Дашевский

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ